Recent developments and trends in the electrochemical promotion of catalysis (EPOC)

Abstract

Electrochemical Promotion of Catalysis (EPOC or NEMCA effect) is one of the most exciting discoveries in Electrochemistry with great impact on many catalytic and electrocatalytic processes. According to the words of John O’M. Bockris, EPOC is a triumph, and the latest in a series of advances in electrochemistry which have come about in the last 30 years. It has been shown with more than 80 different catalytic systems that the catalytic activity and selectivity of conductive catalysts deposited on solid electrolytes can be altered in a very pronounced, reversible and, to some extent, predictable manner by applying electrical currents or potentials (typically up to ±2 V) between the catalyst and a second electronic conductor (counter electrode) also deposited on the solid electrolyte. The induced steady-state change in catalytic rate can be up to 135 × 103% higher than the normal (open-circuit) catalytic rate and up to 3 × 105 higher than the steady-state rate of ion supply. EPOC studies in the last 7 years mainly focus on the following four areas: Catalytic reactions with environmental impact (such as reduction of NO x and oxidation of light hydrocarbons), mechanistic studies on the origin of EPOC (using mainly oxygen ion conductors), scale-up pf EPOC reactors for potential commercialization via development of novel compact monolithic reactors and application of EPOC in high or low temperature fuel cells via introduction of the concept of triode fuel cell. The most recent EPOC studies in these areas are discussed in the present review and some of the future trends and aims of EPOC research are presented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

AP:

Atmospheric pressure

BCN:

Ba3Ca1.19Nb1.82O9−a

BPG:

Gd-doped BaPrO3

BZY:

Y-doped BaZrO3

CV:

Cyclic voltammetry

EP:

Electrochemical promotion

EPOC:

Electrochemical promotion of catalysis

FC:

Fuel cell

FTIR:

Fourier transform infrared spectroscopy

HC:

Hydrocarbon

HV:

High vacuum

LaAlO:

La1.8Al0.2O3

LSC:

La0.6Sr0.4Co0.2F0.8O3

LSCM:

La0.8Sr0.2Co0.8Fe0.2O3

LSM:

La0.85Sr0.15MnO3

LSV:

Linear sweep voltammetry

MEPR:

Monolithic electropromoted reactor

MSI:

Metal-support interactions

NASICON:

Na3Zr2Si2PO12

NEMCA:

Non-Faradaic elecrochemical modification of catalytic activity

PEMFC:

Polymer electrolyte membrane fuel cell

PVD:

Physical vapour deposition

RWGS:

Reversed water-gas-shift

SCY:

SrCe0.95Y0.05O3−a

SEM:

Scanning electron microscopy

SEM-EDX:

Energy-dispersive X-ray spectroscopy analysis conducted by means of SEM

SOFC:

Solid oxide fuel cell

STM:

Scanning tunnelling microscopy

SZY:

SrZr0.95Y0.05O3−a

TE:

Transient experiments

tpb:

Three phase boundaries

TPD:

Temperature programmed desorption

TPR:

Temperature programmed reaction

UHV:

Ultra high vacuum

WGS:

Water-gas-shift

YSZ:

Y2O3-doped ZrO2

References

  1. 1.

    Stoukides M, Vayenas CG (1981) J Catal 70:137

    CAS  Google Scholar 

  2. 2.

    Politova TI, Sobyanin VA, Belyaev VD (1990) React Kinet Catal Lett 41:321

    CAS  Google Scholar 

  3. 3.

    Foti G, Wodiunig S, Comninellis C (2000) Curr Top Electrochem 7:1

    CAS  Google Scholar 

  4. 4.

    Harkness I, Lambert RM (1995) J Catal 152:211

    CAS  Google Scholar 

  5. 5.

    Cavalca CA, Haller GL (1998) J Catal 177:389

    CAS  Google Scholar 

  6. 6.

    Anastasijevic NA, Hillrichs E, Lohrberg K, Ungar G (1997) US Patent

  7. 7.

    Stoukides M (1988) Ind Eng Chem Res 27:1745

    CAS  Google Scholar 

  8. 8.

    Yentekakis IV, Lambert RM, Tikhov MS, Konsolakis M, Kiousis V (1998) J Catal 176:82

    CAS  Google Scholar 

  9. 9.

    Ploense L, Salazar M, Gurau B, Smotkin ES (1997) J Am Chem Soc 119:11550

    CAS  Google Scholar 

  10. 10.

    Douvartzides SL, Tsiakaras PE (2002) J Catal 211:521

    CAS  Google Scholar 

  11. 11.

    Poppe J, Voelkening S, Schaak A, Schuetz E, Janek J, Imbihl R (1999) Phys Chem Chem Phys 1:5241

    CAS  Google Scholar 

  12. 12.

    Pacchioni G, Lomas JR, Illas F (1997) Mol Catal A Chem 119:263

    CAS  Google Scholar 

  13. 13.

    Petrushina IM, Bandur VA, Cappeln F, Bjerrum NJ (2000) J Electrochem Soc 147:3010

    CAS  Google Scholar 

  14. 14.

    Hong JK, Oh I-H, Hong S-A, Lee WY (1996) J Catal 163:95

    CAS  Google Scholar 

  15. 15.

    Emery DA, Middleton PH, Metcalfe IS (1998) Surf Sci 405:308

    CAS  Google Scholar 

  16. 16.

    Janek J, Rohnke M, Luerssen B, Imbihl R (2000) Phys Chem Chem Phys 2:1935

    CAS  Google Scholar 

  17. 17.

    Lamy-Pitara E, Mouahid SE, Barbier J (2000) Electrochim Acta 45:4299

    CAS  Google Scholar 

  18. 18.

    Leiva EPM, Sanchez CG (2003) J Solid State Electrochem 7:588

    CAS  Google Scholar 

  19. 19.

    Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) J Catal 208:412

    CAS  Google Scholar 

  20. 20.

    de Lucas-Consuegra A, Dorado F, Jimenez-Borja C, Valverde JL (2008) Appl Catal B Environ 78:222

    Google Scholar 

  21. 21.

    de Lucas-Consuegra A, Dorado F, Valverde JL, Karoum R, Vernoux P (2007) J Catal 251:474

    Google Scholar 

  22. 22.

    Bockris JOM, Minevski ZS (1994) Electrochim Acta 39:1471

    CAS  Google Scholar 

  23. 23.

    Lu G-Q, Wieckowski A (2000) Curr Opin Colloid Interface Sci 5:95

    CAS  Google Scholar 

  24. 24.

    Pritchard J (1990) Nature 343:592

    Google Scholar 

  25. 25.

    Grzybowska-Swierkosz B, Haber J (1994) In: Annual reports on the progress of chemistry, The Royal Society of Chemistry, Cambridge

  26. 26.

    Riess I (2006) Solid State Ionics 177:1591

    CAS  Google Scholar 

  27. 27.

    Riess I (2005) Solid State Ionics 176:1667

    CAS  Google Scholar 

  28. 28.

    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) In: Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions, Kluwer Academic/Plenum Publishers, New York

  29. 29.

    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 226:197

    CAS  Google Scholar 

  30. 30.

    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 222:192

    CAS  Google Scholar 

  31. 31.

    Neophytides S, Tsiplakides D, Vayenas CG (1998) J Catal 178:414

    CAS  Google Scholar 

  32. 32.

    Katsaounis A (2008) J Appl Electrochem 38:1097

    CAS  Google Scholar 

  33. 33.

    Bebelis S, Vayenas CG (1989) J Catal 118:125

    CAS  Google Scholar 

  34. 34.

    Koutsodontis C, Katsaounis A, Figueroa JC, Cavalca C, Pereira C, Vayenas CG (2006) Top Catal 39:97

    CAS  Google Scholar 

  35. 35.

    Koutsodontis C, Katsaounis A, Figueroa JC, Cavalca C, Pereira CJ, Vayenas CG (2006) Top Catal 38:157

    CAS  Google Scholar 

  36. 36.

    Bebelis S, Kotsionopoulos N (2006) Solid State Ionics 177:2205

    CAS  Google Scholar 

  37. 37.

    Kokkofitis C, Karagiannakis G, Zisekas S, Stoukides M (2005) J Catal 234:476

    CAS  Google Scholar 

  38. 38.

    Roche V, Karoum R, Billard A, Revel R, Vernoux P (2008) J Appl Electrochem 38:1111

    CAS  Google Scholar 

  39. 39.

    Thursfield A, Brosda S, Pliangos C, Schober T, Vayenas CG (2003) Electrochim Acta 48:3779

    CAS  Google Scholar 

  40. 40.

    Poulidi D, Metcalfe IS (2006) Solid State Ionics 177:2211

    CAS  Google Scholar 

  41. 41.

    Poulidi D, Castillo-del-Rio MA, Salar R, Thursfield A, Metcalfe IS (2003) Solid State Ionics 162–163:305

    Google Scholar 

  42. 42.

    Karoum R, de Lucas-Consuegra A, Dorado F, Valverde JL, Billard A, Vernoux P (2008) J Appl Electrochem 38:1083

    CAS  Google Scholar 

  43. 43.

    Gaillard F, Li XG, Uray M, Vernoux P (2004) Catal Lett 96:177

    CAS  Google Scholar 

  44. 44.

    Vernoux P, Gaillard F, Lopez C, Siebert E (2004) Solid State Ionics 175:609

    CAS  Google Scholar 

  45. 45.

    Billard A, Vernoux P (2007) Top Catal 44:369

    CAS  Google Scholar 

  46. 46.

    Roche V, Siebert E, Steil MC, Deloume JP, Roux C, Pagnier T, Revel R, Vernoux P (2008) Ionics 14:235

    CAS  Google Scholar 

  47. 47.

    Li X, Gaillard F, Vernoux P (2007) Top Catal 44:391

    CAS  Google Scholar 

  48. 48.

    Kotsionopoulos N, Bebelis S (2007) Top Catal 44:379

    CAS  Google Scholar 

  49. 49.

    Kotsionopoulos N, Bebelis S (2005) J Appl Electrochem 35:1253

    CAS  Google Scholar 

  50. 50.

    Kokkofitis C, Karagiannakis G, Stoukides M (2007) Top Catal 44:361

    CAS  Google Scholar 

  51. 51.

    Tsiakaras PE, Douvartzides SL, Demin AK, Sobyanin VA (2002) Solid State Ionics 152:721

    Google Scholar 

  52. 52.

    de Lucas-Consuegra A, Dorado F, Valverde JL, Karoum R, Vernoux P (2008) Catal Commun 9:17

    Google Scholar 

  53. 53.

    Lintanf A, Djurado E, Vernoux P (2008) Solid State Ionics 178:1998

    CAS  Google Scholar 

  54. 54.

    Vernoux P, Gaillard F, Karoum R, Billard A (2007) Appl Catal B Environ 73:73

    CAS  Google Scholar 

  55. 55.

    Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Appl Catal B Environ 73:42

    CAS  Google Scholar 

  56. 56.

    Dorado F, de Lucas-Consuegra A, Jimenez C, Valverde JL (2007) Appl Catal A Gen 321:86

    CAS  Google Scholar 

  57. 57.

    Vernoux P, Gaillard F, Lopez C, Siebert E (2003) J Catal 217:203

    CAS  Google Scholar 

  58. 58.

    de Lucas-Consuegra A, Caravaca A, Sanchez P, Dorado F, Valverde JL (2008) J Catal 259:54

    Google Scholar 

  59. 59.

    Kokkofitis C, Ouzounidou M, Skodra A, Stoukides M (2007) Solid State Ionics 178:475

    CAS  Google Scholar 

  60. 60.

    Karagiannakis G, Zisekas S, Stoukides M (2003) Solid State Ionics 162–163:313

    Google Scholar 

  61. 61.

    Skodra A, Ouzounidou M, Stoukides M (2006) Solid State Ionics 177:2217

    CAS  Google Scholar 

  62. 62.

    Vayenas CG, Brosda S, Pliangos C (2001) J Catal 203:329

    CAS  Google Scholar 

  63. 63.

    Brosda S, Vayenas CG (2002) J Catal 208:38

    CAS  Google Scholar 

  64. 64.

    Brosda S, Vayenas CG, Wei J (2006) Appl Catal B Environ 68:109

    CAS  Google Scholar 

  65. 65.

    Karagiannakis G, Kokkofitis C, Zisekas S, Stoukides M (2005) Catal Today 104:219

    CAS  Google Scholar 

  66. 66.

    Constantinou I, Archonta D, Brosda S, Lepage M, Sakamoto Y, Vayenas CG (2006) J Catal 251:400

    Google Scholar 

  67. 67.

    Poulidi D, Thursfield A, Metcalfe IS (2007) Top Catal 44:435

    CAS  Google Scholar 

  68. 68.

    Poulidi D, Mather GC, Metcalfe IS (2007) Solid State Ionics 178:675

    CAS  Google Scholar 

  69. 69.

    Karagiannakis G, Zisekas S, Kokkofitis C, Stoukides M (2006) Appl Catal A Gen 301:265

    CAS  Google Scholar 

  70. 70.

    Kokkofitis C, Ouzounidou M, Skodra A, Stoukides M (2007) Solid State Ionics 178:507

    CAS  Google Scholar 

  71. 71.

    Kokkofitis C, Karagiannakis G, Stoukides M (2007) Catal Today 127:330

    CAS  Google Scholar 

  72. 72.

    Kiatkittipong W, Tagawa T, Goto S, Assabumrungrat S, Praserthdam P (2004) Solid State Ionics 166:127

    CAS  Google Scholar 

  73. 73.

    Vayenas C, Archonta D, Tsiplakides D (2003) J Electroanal Chem 554–555:301

    Google Scholar 

  74. 74.

    Archonta D, Frantzis A, Tsiplakides D, Vayenas CG (2006) Solid State Ionics 177:2221

    CAS  Google Scholar 

  75. 75.

    Leiva EPM (2007) Top Catal 44:347

    CAS  Google Scholar 

  76. 76.

    Fleig J, Jamnik J (2005) J Electrochem Soc 152:E138

    CAS  Google Scholar 

  77. 77.

    Leiva EPM, Vazquez C, Rojas MI, Mariscal MM (2008) J Appl Electrochem 38:1065

    CAS  Google Scholar 

  78. 78.

    Riess I, Vayenas CG (2003) Solid State Ionics 159:313

    CAS  Google Scholar 

  79. 79.

    Vayenas CG (2004) Solid State Ionics 168:321

    CAS  Google Scholar 

  80. 80.

    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625

    CAS  Google Scholar 

  81. 81.

    Ladas S, Bebelis S, Vayenas CG (1991) Surf Sci 251/252:1062

    Google Scholar 

  82. 82.

    Nicole J, Tsiplakides D, Wodiunig S, Comninellis C (1997) J Electrochem Soc 144:L312

    CAS  Google Scholar 

  83. 83.

    Falgairette C, Jaccoud A, Foti G, Ch C (2008) J Appl Electrochem 38:1075

    CAS  Google Scholar 

  84. 84.

    Vayenas CG, Pitselis GE (2001) Ind Eng Chem Res 40:4209

    CAS  Google Scholar 

  85. 85.

    Billard A, Vernoux P (2005) Ionics 11:126

    CAS  Google Scholar 

  86. 86.

    Balomenou S, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Comninellis C, Vayenas CG (2004) Appl Catal B Environ 52:181

    CAS  Google Scholar 

  87. 87.

    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Foti G, Comninellis C, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Solid State Ionics 177:2201

    CAS  Google Scholar 

  88. 88.

    Koutsodontis C, Hammad A, Lepage M, Sakamoto Y, Foti G, Vayenas CG (2008) Top Catal 50:192

    CAS  Google Scholar 

  89. 89.

    Souentie S, Hammad A, Brosda S, Foti G, Vayenas CG (2008) J Appl Electrochem 38:1159

    CAS  Google Scholar 

  90. 90.

    Tsiplakides D, Balomenou S, Katsaounis A, Archonta D, Koutsodontis C, Vayenas CG (2005) Catal Today 100:133

    CAS  Google Scholar 

  91. 91.

    Balomenou S, Tsiplakides D, Vayenas CG, Poulston S, Houel V, Collier A, Konstandopoulos A, Agrafiotis C (2007) Top Catal 44:481

    CAS  Google Scholar 

  92. 92.

    Poulidi D, Metcalfe IS (2008) J Appl Electrochem 38:1121

    CAS  Google Scholar 

  93. 93.

    Ploense L, Salazar M, Gurau B, Smotkin ES (2000) Solid State Ionics 136:713

    Google Scholar 

  94. 94.

    Salazar M, Smotkin ES (2006) J Appl Electrochem 36:1237

    CAS  Google Scholar 

  95. 95.

    Sapountzi F, Tsampas MN, Vayenas CG (2007) Top Catal 44:461

    CAS  Google Scholar 

  96. 96.

    Sapountzi FM, Tsampas MN, Vayenas CG (2007) Catal Today 127:295

    CAS  Google Scholar 

  97. 97.

    Balomenou SP, Vayenas CG (2004) J Electrochem Soc 151:A1874

    CAS  Google Scholar 

  98. 98.

    Balomenou SP, Sapountzi F, Presvytes D, Tsampas M, Vayenas CG (2006) Solid State Ionics 177:2023

    CAS  Google Scholar 

  99. 99.

    Bebelis S, Karasali H, Vayenas CG (2008) Solid State Ionics 179:1391

    CAS  Google Scholar 

  100. 100.

    Bebelis S, Karasali H, Vayenas CG (2008) J Appl Electrochem 38:1127

    CAS  Google Scholar 

  101. 101.

    de Lucas-Consuegra A, Dorado F, Jimenez-Borja C, Valverde JL (2008) J Appl Electrochem 38:1151

    Google Scholar 

  102. 102.

    Labou D, Neophytides SG (2007) Top Catal 44:451

    CAS  Google Scholar 

  103. 103.

    Trasatti S (1990) Electrochim Acta 35:269

    CAS  Google Scholar 

  104. 104.

    Trasatti S (1982) J Electroanal Chem 139:1

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Katsaounis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katsaounis, A. Recent developments and trends in the electrochemical promotion of catalysis (EPOC). J Appl Electrochem 40, 885–902 (2010). https://doi.org/10.1007/s10800-009-9938-7

Download citation

Keywords

  • EPOC
  • NEMCA
  • Electrochemical promotion
  • Electropromotion