Journal of Applied Electrochemistry

, Volume 40, Issue 5, pp 885–902 | Cite as

Recent developments and trends in the electrochemical promotion of catalysis (EPOC)

Original Paper

Abstract

Electrochemical Promotion of Catalysis (EPOC or NEMCA effect) is one of the most exciting discoveries in Electrochemistry with great impact on many catalytic and electrocatalytic processes. According to the words of John O’M. Bockris, EPOC is a triumph, and the latest in a series of advances in electrochemistry which have come about in the last 30 years. It has been shown with more than 80 different catalytic systems that the catalytic activity and selectivity of conductive catalysts deposited on solid electrolytes can be altered in a very pronounced, reversible and, to some extent, predictable manner by applying electrical currents or potentials (typically up to ±2 V) between the catalyst and a second electronic conductor (counter electrode) also deposited on the solid electrolyte. The induced steady-state change in catalytic rate can be up to 135 × 103% higher than the normal (open-circuit) catalytic rate and up to 3 × 105 higher than the steady-state rate of ion supply. EPOC studies in the last 7 years mainly focus on the following four areas: Catalytic reactions with environmental impact (such as reduction of NOx and oxidation of light hydrocarbons), mechanistic studies on the origin of EPOC (using mainly oxygen ion conductors), scale-up pf EPOC reactors for potential commercialization via development of novel compact monolithic reactors and application of EPOC in high or low temperature fuel cells via introduction of the concept of triode fuel cell. The most recent EPOC studies in these areas are discussed in the present review and some of the future trends and aims of EPOC research are presented.

Keywords

EPOC NEMCA Electrochemical promotion Electropromotion 

List of acronyms

AP

Atmospheric pressure

BCN

Ba3Ca1.19Nb1.82O9−a

BPG

Gd-doped BaPrO3

BZY

Y-doped BaZrO3

CV

Cyclic voltammetry

EP

Electrochemical promotion

EPOC

Electrochemical promotion of catalysis

FC

Fuel cell

FTIR

Fourier transform infrared spectroscopy

HC

Hydrocarbon

HV

High vacuum

LaAlO

La1.8Al0.2O3

LSC

La0.6Sr0.4Co0.2F0.8O3

LSCM

La0.8Sr0.2Co0.8Fe0.2O3

LSM

La0.85Sr0.15MnO3

LSV

Linear sweep voltammetry

MEPR

Monolithic electropromoted reactor

MSI

Metal-support interactions

NASICON

Na3Zr2Si2PO12

NEMCA

Non-Faradaic elecrochemical modification of catalytic activity

PEMFC

Polymer electrolyte membrane fuel cell

PVD

Physical vapour deposition

RWGS

Reversed water-gas-shift

SCY

SrCe0.95Y0.05O3−a

SEM

Scanning electron microscopy

SEM-EDX

Energy-dispersive X-ray spectroscopy analysis conducted by means of SEM

SOFC

Solid oxide fuel cell

STM

Scanning tunnelling microscopy

SZY

SrZr0.95Y0.05O3−a

TE

Transient experiments

tpb

Three phase boundaries

TPD

Temperature programmed desorption

TPR

Temperature programmed reaction

UHV

Ultra high vacuum

WGS

Water-gas-shift

YSZ

Y2O3-doped ZrO2

References

  1. 1.
    Stoukides M, Vayenas CG (1981) J Catal 70:137Google Scholar
  2. 2.
    Politova TI, Sobyanin VA, Belyaev VD (1990) React Kinet Catal Lett 41:321Google Scholar
  3. 3.
    Foti G, Wodiunig S, Comninellis C (2000) Curr Top Electrochem 7:1Google Scholar
  4. 4.
    Harkness I, Lambert RM (1995) J Catal 152:211Google Scholar
  5. 5.
    Cavalca CA, Haller GL (1998) J Catal 177:389Google Scholar
  6. 6.
    Anastasijevic NA, Hillrichs E, Lohrberg K, Ungar G (1997) US PatentGoogle Scholar
  7. 7.
    Stoukides M (1988) Ind Eng Chem Res 27:1745Google Scholar
  8. 8.
    Yentekakis IV, Lambert RM, Tikhov MS, Konsolakis M, Kiousis V (1998) J Catal 176:82Google Scholar
  9. 9.
    Ploense L, Salazar M, Gurau B, Smotkin ES (1997) J Am Chem Soc 119:11550Google Scholar
  10. 10.
    Douvartzides SL, Tsiakaras PE (2002) J Catal 211:521Google Scholar
  11. 11.
    Poppe J, Voelkening S, Schaak A, Schuetz E, Janek J, Imbihl R (1999) Phys Chem Chem Phys 1:5241Google Scholar
  12. 12.
    Pacchioni G, Lomas JR, Illas F (1997) Mol Catal A Chem 119:263Google Scholar
  13. 13.
    Petrushina IM, Bandur VA, Cappeln F, Bjerrum NJ (2000) J Electrochem Soc 147:3010Google Scholar
  14. 14.
    Hong JK, Oh I-H, Hong S-A, Lee WY (1996) J Catal 163:95Google Scholar
  15. 15.
    Emery DA, Middleton PH, Metcalfe IS (1998) Surf Sci 405:308Google Scholar
  16. 16.
    Janek J, Rohnke M, Luerssen B, Imbihl R (2000) Phys Chem Chem Phys 2:1935Google Scholar
  17. 17.
    Lamy-Pitara E, Mouahid SE, Barbier J (2000) Electrochim Acta 45:4299Google Scholar
  18. 18.
    Leiva EPM, Sanchez CG (2003) J Solid State Electrochem 7:588Google Scholar
  19. 19.
    Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) J Catal 208:412Google Scholar
  20. 20.
    de Lucas-Consuegra A, Dorado F, Jimenez-Borja C, Valverde JL (2008) Appl Catal B Environ 78:222Google Scholar
  21. 21.
    de Lucas-Consuegra A, Dorado F, Valverde JL, Karoum R, Vernoux P (2007) J Catal 251:474Google Scholar
  22. 22.
    Bockris JOM, Minevski ZS (1994) Electrochim Acta 39:1471Google Scholar
  23. 23.
    Lu G-Q, Wieckowski A (2000) Curr Opin Colloid Interface Sci 5:95Google Scholar
  24. 24.
    Pritchard J (1990) Nature 343:592Google Scholar
  25. 25.
    Grzybowska-Swierkosz B, Haber J (1994) In: Annual reports on the progress of chemistry, The Royal Society of Chemistry, CambridgeGoogle Scholar
  26. 26.
    Riess I (2006) Solid State Ionics 177:1591Google Scholar
  27. 27.
    Riess I (2005) Solid State Ionics 176:1667Google Scholar
  28. 28.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) In: Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions, Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  29. 29.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 226:197Google Scholar
  30. 30.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 222:192Google Scholar
  31. 31.
    Neophytides S, Tsiplakides D, Vayenas CG (1998) J Catal 178:414Google Scholar
  32. 32.
    Katsaounis A (2008) J Appl Electrochem 38:1097Google Scholar
  33. 33.
    Bebelis S, Vayenas CG (1989) J Catal 118:125Google Scholar
  34. 34.
    Koutsodontis C, Katsaounis A, Figueroa JC, Cavalca C, Pereira C, Vayenas CG (2006) Top Catal 39:97Google Scholar
  35. 35.
    Koutsodontis C, Katsaounis A, Figueroa JC, Cavalca C, Pereira CJ, Vayenas CG (2006) Top Catal 38:157Google Scholar
  36. 36.
    Bebelis S, Kotsionopoulos N (2006) Solid State Ionics 177:2205Google Scholar
  37. 37.
    Kokkofitis C, Karagiannakis G, Zisekas S, Stoukides M (2005) J Catal 234:476Google Scholar
  38. 38.
    Roche V, Karoum R, Billard A, Revel R, Vernoux P (2008) J Appl Electrochem 38:1111Google Scholar
  39. 39.
    Thursfield A, Brosda S, Pliangos C, Schober T, Vayenas CG (2003) Electrochim Acta 48:3779Google Scholar
  40. 40.
    Poulidi D, Metcalfe IS (2006) Solid State Ionics 177:2211Google Scholar
  41. 41.
    Poulidi D, Castillo-del-Rio MA, Salar R, Thursfield A, Metcalfe IS (2003) Solid State Ionics 162–163:305Google Scholar
  42. 42.
    Karoum R, de Lucas-Consuegra A, Dorado F, Valverde JL, Billard A, Vernoux P (2008) J Appl Electrochem 38:1083Google Scholar
  43. 43.
    Gaillard F, Li XG, Uray M, Vernoux P (2004) Catal Lett 96:177Google Scholar
  44. 44.
    Vernoux P, Gaillard F, Lopez C, Siebert E (2004) Solid State Ionics 175:609Google Scholar
  45. 45.
    Billard A, Vernoux P (2007) Top Catal 44:369Google Scholar
  46. 46.
    Roche V, Siebert E, Steil MC, Deloume JP, Roux C, Pagnier T, Revel R, Vernoux P (2008) Ionics 14:235Google Scholar
  47. 47.
    Li X, Gaillard F, Vernoux P (2007) Top Catal 44:391Google Scholar
  48. 48.
    Kotsionopoulos N, Bebelis S (2007) Top Catal 44:379Google Scholar
  49. 49.
    Kotsionopoulos N, Bebelis S (2005) J Appl Electrochem 35:1253Google Scholar
  50. 50.
    Kokkofitis C, Karagiannakis G, Stoukides M (2007) Top Catal 44:361Google Scholar
  51. 51.
    Tsiakaras PE, Douvartzides SL, Demin AK, Sobyanin VA (2002) Solid State Ionics 152:721Google Scholar
  52. 52.
    de Lucas-Consuegra A, Dorado F, Valverde JL, Karoum R, Vernoux P (2008) Catal Commun 9:17Google Scholar
  53. 53.
    Lintanf A, Djurado E, Vernoux P (2008) Solid State Ionics 178:1998Google Scholar
  54. 54.
    Vernoux P, Gaillard F, Karoum R, Billard A (2007) Appl Catal B Environ 73:73Google Scholar
  55. 55.
    Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Appl Catal B Environ 73:42Google Scholar
  56. 56.
    Dorado F, de Lucas-Consuegra A, Jimenez C, Valverde JL (2007) Appl Catal A Gen 321:86Google Scholar
  57. 57.
    Vernoux P, Gaillard F, Lopez C, Siebert E (2003) J Catal 217:203Google Scholar
  58. 58.
    de Lucas-Consuegra A, Caravaca A, Sanchez P, Dorado F, Valverde JL (2008) J Catal 259:54Google Scholar
  59. 59.
    Kokkofitis C, Ouzounidou M, Skodra A, Stoukides M (2007) Solid State Ionics 178:475Google Scholar
  60. 60.
    Karagiannakis G, Zisekas S, Stoukides M (2003) Solid State Ionics 162–163:313Google Scholar
  61. 61.
    Skodra A, Ouzounidou M, Stoukides M (2006) Solid State Ionics 177:2217Google Scholar
  62. 62.
    Vayenas CG, Brosda S, Pliangos C (2001) J Catal 203:329Google Scholar
  63. 63.
    Brosda S, Vayenas CG (2002) J Catal 208:38Google Scholar
  64. 64.
    Brosda S, Vayenas CG, Wei J (2006) Appl Catal B Environ 68:109Google Scholar
  65. 65.
    Karagiannakis G, Kokkofitis C, Zisekas S, Stoukides M (2005) Catal Today 104:219Google Scholar
  66. 66.
    Constantinou I, Archonta D, Brosda S, Lepage M, Sakamoto Y, Vayenas CG (2006) J Catal 251:400Google Scholar
  67. 67.
    Poulidi D, Thursfield A, Metcalfe IS (2007) Top Catal 44:435Google Scholar
  68. 68.
    Poulidi D, Mather GC, Metcalfe IS (2007) Solid State Ionics 178:675Google Scholar
  69. 69.
    Karagiannakis G, Zisekas S, Kokkofitis C, Stoukides M (2006) Appl Catal A Gen 301:265Google Scholar
  70. 70.
    Kokkofitis C, Ouzounidou M, Skodra A, Stoukides M (2007) Solid State Ionics 178:507Google Scholar
  71. 71.
    Kokkofitis C, Karagiannakis G, Stoukides M (2007) Catal Today 127:330Google Scholar
  72. 72.
    Kiatkittipong W, Tagawa T, Goto S, Assabumrungrat S, Praserthdam P (2004) Solid State Ionics 166:127Google Scholar
  73. 73.
    Vayenas C, Archonta D, Tsiplakides D (2003) J Electroanal Chem 554–555:301Google Scholar
  74. 74.
    Archonta D, Frantzis A, Tsiplakides D, Vayenas CG (2006) Solid State Ionics 177:2221Google Scholar
  75. 75.
    Leiva EPM (2007) Top Catal 44:347Google Scholar
  76. 76.
    Fleig J, Jamnik J (2005) J Electrochem Soc 152:E138Google Scholar
  77. 77.
    Leiva EPM, Vazquez C, Rojas MI, Mariscal MM (2008) J Appl Electrochem 38:1065Google Scholar
  78. 78.
    Riess I, Vayenas CG (2003) Solid State Ionics 159:313Google Scholar
  79. 79.
    Vayenas CG (2004) Solid State Ionics 168:321Google Scholar
  80. 80.
    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625Google Scholar
  81. 81.
    Ladas S, Bebelis S, Vayenas CG (1991) Surf Sci 251/252:1062Google Scholar
  82. 82.
    Nicole J, Tsiplakides D, Wodiunig S, Comninellis C (1997) J Electrochem Soc 144:L312Google Scholar
  83. 83.
    Falgairette C, Jaccoud A, Foti G, Ch C (2008) J Appl Electrochem 38:1075Google Scholar
  84. 84.
    Vayenas CG, Pitselis GE (2001) Ind Eng Chem Res 40:4209Google Scholar
  85. 85.
    Billard A, Vernoux P (2005) Ionics 11:126Google Scholar
  86. 86.
    Balomenou S, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Comninellis C, Vayenas CG (2004) Appl Catal B Environ 52:181Google Scholar
  87. 87.
    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Foti G, Comninellis C, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Solid State Ionics 177:2201Google Scholar
  88. 88.
    Koutsodontis C, Hammad A, Lepage M, Sakamoto Y, Foti G, Vayenas CG (2008) Top Catal 50:192Google Scholar
  89. 89.
    Souentie S, Hammad A, Brosda S, Foti G, Vayenas CG (2008) J Appl Electrochem 38:1159Google Scholar
  90. 90.
    Tsiplakides D, Balomenou S, Katsaounis A, Archonta D, Koutsodontis C, Vayenas CG (2005) Catal Today 100:133Google Scholar
  91. 91.
    Balomenou S, Tsiplakides D, Vayenas CG, Poulston S, Houel V, Collier A, Konstandopoulos A, Agrafiotis C (2007) Top Catal 44:481Google Scholar
  92. 92.
    Poulidi D, Metcalfe IS (2008) J Appl Electrochem 38:1121Google Scholar
  93. 93.
    Ploense L, Salazar M, Gurau B, Smotkin ES (2000) Solid State Ionics 136:713Google Scholar
  94. 94.
    Salazar M, Smotkin ES (2006) J Appl Electrochem 36:1237Google Scholar
  95. 95.
    Sapountzi F, Tsampas MN, Vayenas CG (2007) Top Catal 44:461Google Scholar
  96. 96.
    Sapountzi FM, Tsampas MN, Vayenas CG (2007) Catal Today 127:295Google Scholar
  97. 97.
    Balomenou SP, Vayenas CG (2004) J Electrochem Soc 151:A1874Google Scholar
  98. 98.
    Balomenou SP, Sapountzi F, Presvytes D, Tsampas M, Vayenas CG (2006) Solid State Ionics 177:2023Google Scholar
  99. 99.
    Bebelis S, Karasali H, Vayenas CG (2008) Solid State Ionics 179:1391Google Scholar
  100. 100.
    Bebelis S, Karasali H, Vayenas CG (2008) J Appl Electrochem 38:1127Google Scholar
  101. 101.
    de Lucas-Consuegra A, Dorado F, Jimenez-Borja C, Valverde JL (2008) J Appl Electrochem 38:1151Google Scholar
  102. 102.
    Labou D, Neophytides SG (2007) Top Catal 44:451Google Scholar
  103. 103.
    Trasatti S (1990) Electrochim Acta 35:269Google Scholar
  104. 104.
    Trasatti S (1982) J Electroanal Chem 139:1Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Environmental EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations