Journal of Applied Electrochemistry

, Volume 40, Issue 5, pp 989–995 | Cite as

Synchronization properties of coupled electrochemical bursters

Rhythmic electrodissolution/passivation of iron electrode assemblies in acidic electrolyte containing chloride ions
  • Antonis KarantonisEmail author
  • Dimitris Koutsaftis
  • Niki Kouloumbi
Original Paper


In the present paper the non-linear time evolution of the electrodissolution/passivation of iron in sulfuric acid–sodium chloride solution is explored. The working electrode is an assembly of two iron disk electrodes, interacting through the electrolyte, and the time evolution of the electric current has the form of spontaneous bursting oscillations. The main aim of this work is to characterize the modes of synchrony and more specifically the synchronization of electric bursts and the synchronization of electric spikes. The characterization is based on the calculation of the firing rates from the experimental time series and the extraction of the slow dynamics by low-pass filtering. The analysis is performed both for elliptic and square wave electrochemical bursting and the results are compared with neural oscillations.


Iron electrodissolution Passivation Bursting oscillations Chlorides Electrode assemblies 


  1. 1.
    Heathcote H (1907) J Soc Chem Ind 26:899CrossRefGoogle Scholar
  2. 2.
    Lillie R (1920) J Gen Physiol 3:107CrossRefGoogle Scholar
  3. 3.
    Lillie R (1925) J Gen Physiol 7:473CrossRefGoogle Scholar
  4. 4.
    Lillie R (1936) Biol Rev 11:181CrossRefGoogle Scholar
  5. 5.
    Bonhoeffer K (1948) J Gen Physiol 32Google Scholar
  6. 6.
    Bonhoeffer K (1953) Naturwiss 40:301CrossRefGoogle Scholar
  7. 7.
    Bonhoeffer K (1955) Angew Chem 67:1CrossRefGoogle Scholar
  8. 8.
    Franck U (1956) Prog Biophys Chem 6:171Google Scholar
  9. 9.
    Franck U (1978) Angew Chem 17:1CrossRefGoogle Scholar
  10. 10.
    Hudson J, Tsotsis T (1994) Chem Eng Sci 49:1493CrossRefGoogle Scholar
  11. 11.
    Koper M (1996) In: Progogine I, Rice S (eds.) Advances in chemical physics, vol XCII. Wiley, New York, pp 161–298Google Scholar
  12. 12.
    Krischer K (2002) In: Alkire R, Kolb D (eds.) Advances in electrochemical science and engineering, vol 8. Wiley-VCH, Verlag, pp 89–208Google Scholar
  13. 13.
    Karantonis A, Miyakita Y, Nakabayashi S (2002) Phys Rev E 65:046213CrossRefGoogle Scholar
  14. 14.
    Miyakita Y, Karantonis A, Nakabayashi S (2002) Chem Phys Lett 362:461CrossRefGoogle Scholar
  15. 15.
    Karantonis A, Pagitsas M, Miyakita Y, Nakabayashi S (2003) J Phys Chem B 107:14622CrossRefGoogle Scholar
  16. 16.
    Karantonis A, Pagitsas M, Miyakita Y, Nakabayashi S (2004) J Phys Chem B 108:5836CrossRefGoogle Scholar
  17. 17.
    Miyakita Y, Nakabayashi S, Karantonis A (2005) Phys Rev E 71:056207CrossRefGoogle Scholar
  18. 18.
    Karantonis A, Pagitsas M, Yasuyuki Y, Nakabayashi S (2005) Electrochim Acta 50:5056CrossRefGoogle Scholar
  19. 19.
    Karantonis A, Pagitsas M, Miyakita Y, Nakabayashi S (2006) Int J Bifurc Chaos 16:1951CrossRefGoogle Scholar
  20. 20.
    Karantonis A, Koutsaftis D, Kouloumbi N (2008) Chem Phys Lett 460:182CrossRefGoogle Scholar
  21. 21.
    Christoph J, Otterstedt R, Eiswirth M, Jaeger N, Hudson J (1999) J Chem Phys 110:8614CrossRefGoogle Scholar
  22. 22.
    Christoph J, Eiswirth M (2002) Chaos 12:215CrossRefGoogle Scholar
  23. 23.
    Plenge F, Li YJ, Krischer K (2004) J Phys Chem B 108:14255CrossRefGoogle Scholar
  24. 24.
    Sazou D, Pagitsas M, Georgolios C (1992) Electrochim Acta 37:2067CrossRefGoogle Scholar
  25. 25.
    Sazou D, Pagitsas M, Georgolios C (1993) Electrochim Acta 38:2321CrossRefGoogle Scholar
  26. 26.
    Sazou D, Diamantopoulou A, Pagitsas M (2000) J Electroanal Chem 489:1CrossRefGoogle Scholar
  27. 27.
    Koutsaftis D, Karantonis A, Pagitsas M, Kouloumbi N (2007) J Phys Chem C 111:13579CrossRefGoogle Scholar
  28. 28.
    Izhikevich EM (2000) Int J Bifurc Chaos 10:2553Google Scholar
  29. 29.
    Dayan P, Abbott L (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press, MassachusettsGoogle Scholar
  30. 30.
    Rieke F, Warland D, de Ruyter-van Steveninck R, Bialek W (1999) Spikes: exploring the neural code. MIT press, MassachusettsGoogle Scholar
  31. 31.
    Rosenblum M, Kurths J (1998) In: Kantz H, Kurths J, Mayer-Kress G (eds.) Nonlinear analysis of physiological data. Springer, BerlinGoogle Scholar
  32. 32.
    Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, CambridgeGoogle Scholar
  33. 33.
    Elson R, Selverston A, Huerta R, Rulkov N, Rabinovich M, Abarbanel H (1998) Phys Rev Lett 81:5692CrossRefGoogle Scholar
  34. 34.
    Karantonis A, Koutsaftis D, Kouloumbi N (2009) Electrochim Acta. doi: 10.10.16/j.electacta.2009.01.060
  35. 35.
    Kiss I, Wang W, Hudson J (1999) J Phys Chem B 103:11433CrossRefGoogle Scholar
  36. 36.
    Wang W, Kiss I, Hudson J (2000) Chaos 10:248CrossRefGoogle Scholar
  37. 37.
    Kiss I, Gáspár V, Hudson J (2000) J Phys Chem B 104:7554CrossRefGoogle Scholar
  38. 38.
    Kiss I, Wang W, Hudson J (2000) Phys Chem Chem Phys 2:3847CrossRefGoogle Scholar
  39. 39.
    Izhikevich E (2000) SIAM J Appl Math 60:503CrossRefGoogle Scholar
  40. 40.
    Izhikevich E (2001) SIAM Rev 43:315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Antonis Karantonis
    • 1
    Email author
  • Dimitris Koutsaftis
    • 1
  • Niki Kouloumbi
    • 1
  1. 1.Department of Materials Science and Engineering, School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations