Journal of Applied Electrochemistry

, Volume 40, Issue 5, pp 877–883 | Cite as

The use of in situ X-ray absorption spectroscopy in applied fuel cell research

  • Virginie Croze
  • Frank Ettingshausen
  • Julia Melke
  • Matthias Soehn
  • Dominic Stuermer
  • Christina RothEmail author
Original Paper


For a detailed understanding and systematic optimization of fuel cell systems, in situ studies are an indispensable tool, as they provide information on the catalyst structure in different operation conditions. X-ray absorption spectroscopy (XAS) is in particular suitable for operando investigations, since it does not require ultra high vacuum conditions or long-range order in the sample. Furthermore, it provides in situ information on oxidation state, adsorbed species and catalyst structure, and thus complements ex situ information, e.g. from X-ray diffraction (structure), X-ray photoelectron spectroscopy (oxidation state) and FTIR (adsorbates) nicely. In a spectroelectrochemistry experiment, XAS can be combined with different electrochemical techniques in order to satisfy different needs and scientific aims. Spectra of both a Pt–Ru anode catalyst and a Pt–Co cathode catalyst were recorded at different potentials, while measuring the current-potential characteristics of a single cell. So-called half-cell measurements, where the former fuel cell cathode was used with hydrogen as the reference electrode, were performed in water and ethanol to obtain a more detailed mechanistic insight into the ethanol electrooxidation. From a more industrial point of view, different catalysts were tested with a fast potential cycling protocol simulating rapid load changes in a vehicle.


In situ Fuel cells X-ray absorption spectroscopy Spectroelectrochemistry Operando 



Thanks are due to the staff of beamline X1 at HASYLAB, Hamburg, in particular A. Webb and M. Hermann.


  1. 1.
    de Bruijn FA, Dam VAT, Janssen GJM (2008) Fuel Cells 8:3CrossRefGoogle Scholar
  2. 2.
    He T, Kreidler E, Xiong L, Luo J, Zhong CJ (2006) J Electrochem Soc 153:A1637CrossRefGoogle Scholar
  3. 3.
    Garsuch A, MacIntyre K, Michaud X, Stevens DA, Dahn JR (2008) J Electrochem Soc 155:B953CrossRefGoogle Scholar
  4. 4.
    Bashyam R, Zelenay P (2006) Nature 443:63CrossRefGoogle Scholar
  5. 5.
    Charreteur F, Jaouen F, Ruggeri S, Dodelet J-P (2008) Electrochim Acta 53:2925CrossRefGoogle Scholar
  6. 6.
    Ferreira PJ, lao GJ, Shao-Horn Y, Morgan D, Makkharia R, Kocha S, Gasteiger HA (2005) J Electrochem Soc 152:A2256CrossRefGoogle Scholar
  7. 7.
    Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) Phys Chem Chem Phys 8:746CrossRefGoogle Scholar
  8. 8.
    Zhang J, Litteer BA, Wenbin G, Liu H, Gasteiger HA (2007) J Electrochem Soc 154:B1006CrossRefGoogle Scholar
  9. 9.
    Kim L, Chung CG, Sung YW, Chung JS (2008) J Power Sources 183:524CrossRefGoogle Scholar
  10. 10.
    Liang ZX, Zhao TS, Xu JB (2008) J Power Sources 185:166CrossRefGoogle Scholar
  11. 11.
    Park GS, Pak C, Chung YS, Kim JR, Jeon WS, Lee YH, Kim K, Chang H, Seung D (2008) J Power Sources 176:484CrossRefGoogle Scholar
  12. 12.
    Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ (2006) Electrochim Acta 52:221CrossRefGoogle Scholar
  13. 13.
    Grgur BN, Markovic NM, Ross PN (1999) J Electrochem Soc 146:1613CrossRefGoogle Scholar
  14. 14.
    Stamenkovic V, Grgur BN, Ross PN, Markovic NM (2005) J Electrochem Soc 152:A277CrossRefGoogle Scholar
  15. 15.
    Maillard F, Lu G.-Q, Wieckowski A, Stimming U (2005) J Phys Chem B 109:16230CrossRefGoogle Scholar
  16. 16.
    Long JW, Stroud RM, Swider-Lyons KE, Rolison DR (2000) J Phys Chem B 104:9772CrossRefGoogle Scholar
  17. 17.
    Lu GJ, Cooper JS, McGinn PJ (2006) J Power Sources 161:106CrossRefGoogle Scholar
  18. 18.
    Stevens DA, Rouleau JM, Mar RE, Atanasoski RT, Schmoeckel AK, Debe MK, Dahn JR (2007) J Electrochem Soc 154:B1211CrossRefGoogle Scholar
  19. 19.
    Weckhuysen BM (2004) In: Weckhuysen BM (ed) In situ spectroscopy of catalysts. American Scientific Publishers, CA, USA, pp 1–10Google Scholar
  20. 20.
    Roth C, Benker N, Mazurek M, Scheiba F, Fuess H (2007) Appl Catal A 319:81CrossRefGoogle Scholar
  21. 21.
    Russell AE, Ball SC, Maniguet S, Thompsett D (2007) J Power Sources 171:72CrossRefGoogle Scholar
  22. 22.
    Teliska M, O’Grady WE, Ramaker DE (2005) J Phys Chem B 109:8076CrossRefGoogle Scholar
  23. 23.
    Koningsberger DC, Oudenhuijzen MK, de Graaf J, van Bokhoven JA, Ramaker DE (2003) J Catal 216:178CrossRefGoogle Scholar
  24. 24.
    Russell AE, Rose A (2004) Chem Rev 104:4613CrossRefGoogle Scholar
  25. 25.
    Gale RJ (ed) (1988) Spectroelectrochemistry: theory and practice, Springer,  NY, USAGoogle Scholar
  26. 26.
    Principi E, Di Cicco A, Witkowska A, Marassi R (2007) J Synchr Rad 14:276CrossRefGoogle Scholar
  27. 27.
    Witkowska A, Dsoke S, Principi E, Marassi R, Di Cicco A, Rossi V (2008) J Power Sources 178:603CrossRefGoogle Scholar
  28. 28.
    Stoupin S, Chung EH, Chattopadhyay S, Segre CU, Smotkin ES (2006) J Phys Chem B 110:9932 Google Scholar
  29. 29.
    Viswanathan R, Liu R, Smotkin ES (2002) Rev Sci Instrum 73:2124Google Scholar
  30. 30.
    Wiltshire RJK, King CR, Rose A, Wells PP, Hogarth MP, Thompsett D, Russell AE (2005) Electrochim Acta 50:5208CrossRefGoogle Scholar
  31. 31.
    Chen Z, Xu L, Li W, Waje M, Yan Y (2006) Nanotechnology 17:5254CrossRefGoogle Scholar
  32. 32.
    Vaarkamp M, Linders JC, Koningsberger DC (1995) Physica B 208/209:159CrossRefGoogle Scholar
  33. 33.
    Ravel B, Newville M (2005) J Synchr Rad 12:537CrossRefGoogle Scholar
  34. 34.
    van Dorssen GE, Koningsberger DC, Ramaker DE (2002) J Phys Condens Matter 14:13529CrossRefGoogle Scholar
  35. 35.
    Hind AR, Bhargava SK, McKinnon A (2001) Adv Colloid Interface Sci 93:91CrossRefGoogle Scholar
  36. 36.
    Wang JX, Zhang J, Adzic RR (2007) J Phys Chem A 111:12702CrossRefGoogle Scholar
  37. 37.
    Wang JX, Uribe FA, Springer TE, Zhang J, Adzic RR (2008) Faraday Discuss 140Google Scholar
  38. 38.
    Scott FJ, Roth C, Ramaker DE (2007) J Phys Chem C 111:11403CrossRefGoogle Scholar
  39. 39.
    Roth C, Benker N, Buhrmester Th, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) J Am Chem Soc 127:14607CrossRefGoogle Scholar
  40. 40.
    Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsoe H (2002) Science 295:2053CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Virginie Croze
    • 1
  • Frank Ettingshausen
    • 1
  • Julia Melke
    • 2
  • Matthias Soehn
    • 3
  • Dominic Stuermer
    • 1
  • Christina Roth
    • 1
    Email author
  1. 1.Renewable Energies, Institute for Materials ScienceTU DarmstadtDarmstadtGermany
  2. 2.Fraunhofer Institute for Solar Energy SystemsFreiburgGermany
  3. 3.Renewable Energies, Institute for Electrical Power SystemsTU DarmstadtDarmstadtGermany

Personalised recommendations