Skip to main content

Advertisement

Log in

The use of in situ X-ray absorption spectroscopy in applied fuel cell research

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

For a detailed understanding and systematic optimization of fuel cell systems, in situ studies are an indispensable tool, as they provide information on the catalyst structure in different operation conditions. X-ray absorption spectroscopy (XAS) is in particular suitable for operando investigations, since it does not require ultra high vacuum conditions or long-range order in the sample. Furthermore, it provides in situ information on oxidation state, adsorbed species and catalyst structure, and thus complements ex situ information, e.g. from X-ray diffraction (structure), X-ray photoelectron spectroscopy (oxidation state) and FTIR (adsorbates) nicely. In a spectroelectrochemistry experiment, XAS can be combined with different electrochemical techniques in order to satisfy different needs and scientific aims. Spectra of both a Pt–Ru anode catalyst and a Pt–Co cathode catalyst were recorded at different potentials, while measuring the current-potential characteristics of a single cell. So-called half-cell measurements, where the former fuel cell cathode was used with hydrogen as the reference electrode, were performed in water and ethanol to obtain a more detailed mechanistic insight into the ethanol electrooxidation. From a more industrial point of view, different catalysts were tested with a fast potential cycling protocol simulating rapid load changes in a vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Bruijn FA, Dam VAT, Janssen GJM (2008) Fuel Cells 8:3

    Article  Google Scholar 

  2. He T, Kreidler E, Xiong L, Luo J, Zhong CJ (2006) J Electrochem Soc 153:A1637

    Article  CAS  Google Scholar 

  3. Garsuch A, MacIntyre K, Michaud X, Stevens DA, Dahn JR (2008) J Electrochem Soc 155:B953

    Article  CAS  Google Scholar 

  4. Bashyam R, Zelenay P (2006) Nature 443:63

    Article  CAS  Google Scholar 

  5. Charreteur F, Jaouen F, Ruggeri S, Dodelet J-P (2008) Electrochim Acta 53:2925

    Article  CAS  Google Scholar 

  6. Ferreira PJ, lao GJ, Shao-Horn Y, Morgan D, Makkharia R, Kocha S, Gasteiger HA (2005) J Electrochem Soc 152:A2256

    Article  Google Scholar 

  7. Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) Phys Chem Chem Phys 8:746

    Article  CAS  Google Scholar 

  8. Zhang J, Litteer BA, Wenbin G, Liu H, Gasteiger HA (2007) J Electrochem Soc 154:B1006

    Article  CAS  Google Scholar 

  9. Kim L, Chung CG, Sung YW, Chung JS (2008) J Power Sources 183:524

    Article  CAS  Google Scholar 

  10. Liang ZX, Zhao TS, Xu JB (2008) J Power Sources 185:166

    Article  CAS  Google Scholar 

  11. Park GS, Pak C, Chung YS, Kim JR, Jeon WS, Lee YH, Kim K, Chang H, Seung D (2008) J Power Sources 176:484

    Article  CAS  Google Scholar 

  12. Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ (2006) Electrochim Acta 52:221

    Article  CAS  Google Scholar 

  13. Grgur BN, Markovic NM, Ross PN (1999) J Electrochem Soc 146:1613

    Article  CAS  Google Scholar 

  14. Stamenkovic V, Grgur BN, Ross PN, Markovic NM (2005) J Electrochem Soc 152:A277

    Article  CAS  Google Scholar 

  15. Maillard F, Lu G.-Q, Wieckowski A, Stimming U (2005) J Phys Chem B 109:16230

    Article  CAS  Google Scholar 

  16. Long JW, Stroud RM, Swider-Lyons KE, Rolison DR (2000) J Phys Chem B 104:9772

    Article  CAS  Google Scholar 

  17. Lu GJ, Cooper JS, McGinn PJ (2006) J Power Sources 161:106

    Article  CAS  Google Scholar 

  18. Stevens DA, Rouleau JM, Mar RE, Atanasoski RT, Schmoeckel AK, Debe MK, Dahn JR (2007) J Electrochem Soc 154:B1211

    Article  CAS  Google Scholar 

  19. Weckhuysen BM (2004) In: Weckhuysen BM (ed) In situ spectroscopy of catalysts. American Scientific Publishers, CA, USA, pp 1–10

    Google Scholar 

  20. Roth C, Benker N, Mazurek M, Scheiba F, Fuess H (2007) Appl Catal A 319:81

    Article  CAS  Google Scholar 

  21. Russell AE, Ball SC, Maniguet S, Thompsett D (2007) J Power Sources 171:72

    Article  CAS  Google Scholar 

  22. Teliska M, O’Grady WE, Ramaker DE (2005) J Phys Chem B 109:8076

    Article  CAS  Google Scholar 

  23. Koningsberger DC, Oudenhuijzen MK, de Graaf J, van Bokhoven JA, Ramaker DE (2003) J Catal 216:178

    Article  CAS  Google Scholar 

  24. Russell AE, Rose A (2004) Chem Rev 104:4613

    Article  CAS  Google Scholar 

  25. Gale RJ (ed) (1988) Spectroelectrochemistry: theory and practice, Springer,  NY, USA

    Google Scholar 

  26. Principi E, Di Cicco A, Witkowska A, Marassi R (2007) J Synchr Rad 14:276

    Article  CAS  Google Scholar 

  27. Witkowska A, Dsoke S, Principi E, Marassi R, Di Cicco A, Rossi V (2008) J Power Sources 178:603

    Article  CAS  Google Scholar 

  28. Stoupin S, Chung EH, Chattopadhyay S, Segre CU, Smotkin ES (2006) J Phys Chem B 110:9932

    Google Scholar 

  29. Viswanathan R, Liu R, Smotkin ES (2002) Rev Sci Instrum 73:2124

    Google Scholar 

  30. Wiltshire RJK, King CR, Rose A, Wells PP, Hogarth MP, Thompsett D, Russell AE (2005) Electrochim Acta 50:5208

    Article  CAS  Google Scholar 

  31. Chen Z, Xu L, Li W, Waje M, Yan Y (2006) Nanotechnology 17:5254

    Article  CAS  Google Scholar 

  32. Vaarkamp M, Linders JC, Koningsberger DC (1995) Physica B 208/209:159

    Article  Google Scholar 

  33. Ravel B, Newville M (2005) J Synchr Rad 12:537

    Article  CAS  Google Scholar 

  34. van Dorssen GE, Koningsberger DC, Ramaker DE (2002) J Phys Condens Matter 14:13529

    Article  Google Scholar 

  35. Hind AR, Bhargava SK, McKinnon A (2001) Adv Colloid Interface Sci 93:91

    Article  CAS  Google Scholar 

  36. Wang JX, Zhang J, Adzic RR (2007) J Phys Chem A 111:12702

    Article  CAS  Google Scholar 

  37. Wang JX, Uribe FA, Springer TE, Zhang J, Adzic RR (2008) Faraday Discuss 140

  38. Scott FJ, Roth C, Ramaker DE (2007) J Phys Chem C 111:11403

    Article  CAS  Google Scholar 

  39. Roth C, Benker N, Buhrmester Th, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) J Am Chem Soc 127:14607

    Article  CAS  Google Scholar 

  40. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsoe H (2002) Science 295:2053

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Thanks are due to the staff of beamline X1 at HASYLAB, Hamburg, in particular A. Webb and M. Hermann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croze, V., Ettingshausen, F., Melke, J. et al. The use of in situ X-ray absorption spectroscopy in applied fuel cell research. J Appl Electrochem 40, 877–883 (2010). https://doi.org/10.1007/s10800-009-9919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9919-x

Keywords

Navigation