Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin

  • Parandis Daneshgar
  • Parviz Norouzi
  • Ali Akbar Moosavi-Movahedi
  • Mohammad Reza Ganjali
  • Esmael Haghshenas
  • Faeze Dousty
  • Mohammad Farhadi
Original Paper

Abstract

Two sensitive sensors for determination of curcumin (CM) were described. CM can be detected using multiwall carbon nanotube (MWCNT)-modified electrodes and dysprosium nanowire carbon paste electrode using the technique of adsorptive stripping voltammetry (AdSV) in stationary solution and the fast Fourier transform voltammetry at the flowing solution. Both electrodes did show less passivation effect that occurs on the unmodified electrodes and displayed better stability and reproducibility. This electrode enabled selective determination of CM in the presence of interfering species. Under optimized conditions, CM could be detected over a linear range with a detection limit of 5.0 × 10−9 mol L−1 and 5.0 × 10−10 mol L−1 for the traditional square wave and fast Fourier transform square wave voltammetry (FFTSWV) with RSD between 0.2 and 0.5%. Comparison with other reported methods showed these studies are about 100 times more sensitive than previous ones. Good selectivity and high sensitivity obtained by Square wave voltammetry can open new possibilities of direct CM determination.

Keywords

Curcumin Dysprosium nanowire Carbon nanotube Square wave voltammetry 

References

  1. 1.
    Aggarwal BB, Shishodia S (2006) Biochem Pharmacol 71:1397CrossRefGoogle Scholar
  2. 2.
    Hyunsung C, Chun Y-S, Kim S-W, Kim M-S, Park J-W (2006) Molecul Pharmacol (American Soc Pharmacol Experiment Therapeuti) 70:1664Google Scholar
  3. 3.
    Shukla PK, Khanna VK, Ali MM, Khan MY, Srimal RC (2008) Neurochem Res 33:1036–1043CrossRefGoogle Scholar
  4. 4.
    Stix G, Scientific American, 2007 (in press)Google Scholar
  5. 5.
    Srivastava KC, Bordia A, Verma SK (1995) Prostaglandins Leukot Essent Fatty Acids 52:223CrossRefGoogle Scholar
  6. 6.
    Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Cell Mol Life Sci 65:1631CrossRefGoogle Scholar
  7. 7.
    Unnikrishnan MK, Rao MNA (1995) Mol Cell Biochem 146:35CrossRefGoogle Scholar
  8. 8.
    Sugiyama Y, Kawakishi S, Osawa T (1996) Biochem Pharmacol 52:519CrossRefGoogle Scholar
  9. 9.
    Youssef KM, El-Sherbeny MA (2005) Arch Pharm Chem Life Sci 338:181CrossRefGoogle Scholar
  10. 10.
    Chen A, Xu J (2005) Am J Physiol Gastrointest Liver Physiol 288:447CrossRefGoogle Scholar
  11. 11.
    Kapoor S, Priyadarsini KI (2001) Biophys Chem 92:119CrossRefGoogle Scholar
  12. 12.
    Ravindranath V, Chandrasekhara N (1980) Toxicology 16:259CrossRefGoogle Scholar
  13. 13.
    Chan MMY, Huang HI, Fenton MR, Fong D (1998) Biochem Pharmacol 55:1955CrossRefGoogle Scholar
  14. 14.
    Shankar TNB, Shanta NV, Ramesh HP, Murthy IAS, Murthy VS (1980) Ind J Exp Biol 18:73Google Scholar
  15. 15.
    Soni KB, Kuttan R (1992) Ind J Physiol Pharmacol 36:273Google Scholar
  16. 16.
    Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Nature 393:346CrossRefGoogle Scholar
  17. 17.
    Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Science 284:1340CrossRefGoogle Scholar
  18. 18.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622CrossRefGoogle Scholar
  19. 19.
    Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Anal Chem 71:4527Google Scholar
  20. 20.
    Wu K, Fei J, Hu S (2003) Anal Biochem 318:100CrossRefGoogle Scholar
  21. 21.
    Wang J, Musameh M, Lin Y (2003) J Am Chem Soc 125:2408CrossRefGoogle Scholar
  22. 22.
    Gong KP, Dong Y, Xiong SX, Chen Y, Mao LQ (2004) Biosens Bioelectron 20:253CrossRefGoogle Scholar
  23. 23.
    Wu KB, Hu SS (2004) Microchim Acta 144:131CrossRefGoogle Scholar
  24. 24.
    Walter EC, Favier F, Penner RM (2002) Anal Chem 74:1546CrossRefGoogle Scholar
  25. 25.
    Murray BJ, Newberg JT, Walter EC, Li Q, Hemminger JC, Penner RM (2005) Anal Chem 77:5205CrossRefGoogle Scholar
  26. 26.
    Im Y, Lee C, Vasquez RP, Bangar MA, Myung NV, Menke EJ, Penner RM, Yun M (2006) Small 2:356CrossRefGoogle Scholar
  27. 27.
    Li CZ, He HX, Bogozi A, Bunch JS, Tao N (2000) J Appl Phys Lett 76:1335Google Scholar
  28. 28.
    Bogozi A, Lam O, He H, Li C, Tao NJ, Nagahara LA, Amlani I, Tsui R (2001) J Am Chem Soc 123:4585CrossRefGoogle Scholar
  29. 29.
    Liu Z, Searson PC (2006) J Phys Chem B 110:4318CrossRefGoogle Scholar
  30. 30.
    Myung S, Heo K, Lee M, Choi Y-H, Hong S-H, Hong S (2007) Nanotechnology 18:2053CrossRefGoogle Scholar
  31. 31.
    Keating CD, Natan M (2003) J Adv Mater 15:451CrossRefGoogle Scholar
  32. 32.
    Basu M, Seggerson S, Henshaw J, Jiang J, Cordona RD, Lefave C, Boyle PJ, Miller A, Pugia M, Basu S (2004) Glycoconjugate J 21:487CrossRefGoogle Scholar
  33. 33.
    Stoermer RL, Cederquist KB, McFarland SK, Sha MY, Penn SG, Keating CD (2006) J Am Chem Soc 128:16892CrossRefGoogle Scholar
  34. 34.
    Byun KM, Kim SJ, Kim D (2005) Opt Express 13:3737CrossRefGoogle Scholar
  35. 35.
    Durkan C, Welland ME (2000) Phys Rev B 61:14215CrossRefGoogle Scholar
  36. 36.
    Liu L, Song J (2006) Anal Biochem 354:22CrossRefGoogle Scholar
  37. 37.
    Norouzi P, Ganjali MR, Daneshgar P (2007) Sens Actuators B 123:1125CrossRefGoogle Scholar
  38. 38.
    Norouzi P, Ganjali MR, Daneshgar P, Alizadeh T, Mohammadi A (2007) Anal Biochem 360:175–181CrossRefGoogle Scholar
  39. 39.
    Norouzi P, Ganjali MR, Daneshgar P (2007) J Pharmacol Toxicol Methods 55:289CrossRefGoogle Scholar
  40. 40.
    Norouzi P, Ganjali MR, Moosavi-movahedi AA, Larijani B (2007) Talanta 73:54CrossRefGoogle Scholar
  41. 41.
    Norouzi P, Ganjali MR, Zare M, Mohammadi A (2007) J Pharm Sci 96:2009CrossRefGoogle Scholar
  42. 42.
    Norouzi P, Ganjali MR, Akbari-Adergani B (2007) Acta Chim Slov 53:499Google Scholar
  43. 43.
    Nabi Bidhendi G, Norouzi P, Daneshgar P, Ganjali MR (2007) J Hazard Mater 143:264CrossRefGoogle Scholar
  44. 44.
    Daneshgar P, Norouzi P, Ganjali MR, Ordikhani-seyedlar A, Eshraghi H (2009) Coll Surface B 68:27–32CrossRefGoogle Scholar
  45. 45.
    Daneshgar P, Norouzi P, Ganjali MR, Zamani HA (2009) Talanta 77:1075CrossRefGoogle Scholar
  46. 46.
    Stanic Z, Voulgaropoulos A, Girousi S (2008) Electroanalysis 20:1263CrossRefGoogle Scholar
  47. 47.
    Nicholson RS, Shain I (1964) Anal Chem 36:706CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Parandis Daneshgar
    • 1
  • Parviz Norouzi
    • 1
    • 2
  • Ali Akbar Moosavi-Movahedi
    • 3
  • Mohammad Reza Ganjali
    • 1
    • 2
  • Esmael Haghshenas
    • 1
  • Faeze Dousty
    • 1
  • Mohammad Farhadi
    • 4
  1. 1.Center of Excellence in Electrochemistry, Department of ChemistryUniversity of TehranTehranIran
  2. 2.Endocrinology & Metabolism Research CenterTehran University of Medical ScienceTehranIran
  3. 3.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
  4. 4.ENT-HNS Research Center of IranUniversity of Medical SciencesTehranIran

Personalised recommendations