Skip to main content
Log in

Physico-chemical characterization of IrO2–SnO2 sol-gel nanopowders for electrochemical applications

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mixed tin–iridium oxide (Sn0.85Ir0.15O2) nanoparticles at low Ir content (15 mol%) were prepared by the sol–gel preparative route, varying calcination temperatures in the range 450–550 °C. The crystal structures, the phase composition and crystallite sizes were analyzed by X-ray powder diffraction (XRD). The local order of the materials was investigated by Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) analysis revealed the variation of the Ir surface state with the temperature of firing. The morphology of crystallites and the aggregates were analyzed by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM), respectively. Nitrogen physisorption by BET method was adopted to evaluate the particle surface area and the mesopore volume distribution. Electrochemical properties of the Ti-supported powders were evaluated by cyclic voltammetry (CV) and quasi steady-state voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Izutsu K, Yamamoto H (1996) Anal Sci 12:905

    Article  CAS  Google Scholar 

  2. Yao S, Wang M, Madou M (2001) J Electrochem Soc 148:H29

    Article  CAS  Google Scholar 

  3. Patil PS, Kawar RK, Sadale SB (2005) Appl Surf Sci 249:367

    Article  CAS  Google Scholar 

  4. Gottesfeld S, MnIntyre JDE, Beni G, Shay JL (1978) Appl Phys Lett 33:208

    Article  CAS  Google Scholar 

  5. Savinell RF, Zeller RLIII, Adams JA (1990) J Eletcrochem Soc 137:489

    Article  CAS  Google Scholar 

  6. Ribeiro J, Alves PDP, De Andrade AR (2007) J Mat Sci 42:9293

    Article  CAS  Google Scholar 

  7. Marshall A, Borresen B, Hagen G, Tsypkin M, Tunold R (2005) Mater Chem Phys 94:226

    Article  CAS  Google Scholar 

  8. Marshall A, Tsypkin M, Borresen B, Hagen G, Tunold R (2004) J New Mater Electrochem Syst 7:197

    CAS  Google Scholar 

  9. Cardarelli F, Taxil P, Savall A, Comninellis Ch, Manoli G, Leclerc O (1998) J Appl Electrochem 28:245

    Article  CAS  Google Scholar 

  10. Horvath E, Kristof J, Frost RL, Heider N, Vagvolgyi V (2004) J Thermal Anal Calorim 78:687

    Article  CAS  Google Scholar 

  11. Alves VA, da Silva LA, Oliveira ED, Boots JFC (1998) Mater Sci Forum 282:655

    Article  Google Scholar 

  12. Chen X, Chen G (2005) J Electrochem Soc 152:J59

    Article  CAS  Google Scholar 

  13. Chen X, Chen G, Yue PL (2001) J Phys Chem B 105:4623

    Article  CAS  Google Scholar 

  14. Ardizzone S, Bianchi CL, Cappelletti G, Ionita M, Minguzzi A, Rondinini S, Vertova A (2006) J Electroanal Chem 589:160

    Article  CAS  Google Scholar 

  15. Comninellis Ch, Vercesi GP (1991) J Appl Electrochem 21:335

    Article  CAS  Google Scholar 

  16. Ortiz PI, De Pauli CP, Trasatti S (2004) J New Mater Electrochem Syst 7:153

    CAS  Google Scholar 

  17. De Pauli CP, Trasatti S (2002) J Electroanal Chem 538:145

    Article  Google Scholar 

  18. De Pauli CP, Trasatti S (1995) J Electroanal Chem 396:161

    Article  Google Scholar 

  19. Marshall A, Borresen B, Hagen G, Sunde S, Tsypkin M, Tunold R (2006) Russ J Electrochem 42:1134

    Article  CAS  Google Scholar 

  20. Rasten E (2001) Electroctalysis in water electrolysis with solid polymer electrolyte. PhD Thesis, NTNU, Trondheim, Norway

  21. Grupioni AAF, Arashiro E, Lassali TAF (2002) Electrochim Acta 48:407

    Article  CAS  Google Scholar 

  22. Yoshinaga N, Sugimoto W, Takasu Y (2008) Electrochim Acta 54:566

    Article  CAS  Google Scholar 

  23. Takasu Y, Yoshinaga N, Sugimoto W (2008) Electrochem Comm 10:668

    Article  CAS  Google Scholar 

  24. D’Urso C, Morales LS, Di Blasi A, Baglio E, Ornelas R, Orozco G, Arriaga LG, Antonucci V, Aricò A (2007) ECS Trans 11:191

    Article  Google Scholar 

  25. Trasatti S (2001) Port Electrochim Acta 19:197

    Article  CAS  Google Scholar 

  26. Burke LD, Naser NS, Ahern BM (2007) J Solid State Electrochem 11:655

    Article  CAS  Google Scholar 

  27. Shibli SMA, Dilimon VS (2007) J Solid State Electrochem 11:1119

    Article  CAS  Google Scholar 

  28. Tian M, Bakovic L, Chen A (2007) Electrochim Acta 52:6517

    Article  CAS  Google Scholar 

  29. Vázquez-Gómez L, Horváth E, Kristóf J, Rédey Á, De Battisti A (2006) Appl Surf Sci 253:1178

    Article  CAS  Google Scholar 

  30. Ardizzone S, Cappelletti G, Ionita M, Minguzzi A, Rondinini S, Vertova A (2005) Electrochim Acta 50:4419

    Article  CAS  Google Scholar 

  31. Ionita M, Cappelletti G, Minguzzi A, Ardizzone S, Bianchi CL, Rondinini S, Vertova A (2006) J Nanopart Res 8:653

    Article  CAS  Google Scholar 

  32. Cachet-Vivier C, Vivier V, Cha CS, Nedelec J-Y, Yu LT (2001) Electrochim Acta 47:181

    Article  CAS  Google Scholar 

  33. Vertova A, Barhdadi R, Cachet-Vivier C, Locatelli C, Minguzzi A, Nedelec J-Y, Rondinini S (2008) J Appl Electrochem 38:965

    Article  CAS  Google Scholar 

  34. Larson AC, Von Dreele RB (1994) GSAS: General Structural Analysis System. Los Alamos National Laboratory, Los Alamos, NM

  35. Toby BH (2001) J Appl Crystallogr 34:210

    Article  CAS  Google Scholar 

  36. Cappelletti G, Ricci C, Ardizzone S, Parola C, Anedda A (2005) J Phys Chem B 109:4448

    Article  CAS  Google Scholar 

  37. Shirley D (1972) Phys Rev B 5:4709

    Article  Google Scholar 

  38. Chantrell RW, Popplewell J, Charles SW (1977) Physica 86-88B:1421

    Google Scholar 

  39. Vivier V, Cachet-Vivier C, Wu BL, Cha CS, Nedelec J-Y, Yu LT (1999) Electrochem Solid-State Lett 2:385

    Article  CAS  Google Scholar 

  40. Cachet-Vivier C, Vivier V, Cha CS, Nedelec J-Y, Yu LT (2001) J Electrochem Soc 148:E177

    Article  CAS  Google Scholar 

  41. Hume-Rothery W, Raynor G (1954) The structure of metals and alloys. Institute of Metals, London

    Google Scholar 

  42. Murakami Y, Ohkawauchi H, Ito M, Yahiikozawa K, Takasu Y (1994) Electrochim Acta 39:2551

    Article  CAS  Google Scholar 

  43. Liu Y, Li Z, Li J (2004) Acta Mater 52:721

    Article  CAS  Google Scholar 

  44. Reames F (1976) Mater Res Bull 11:1091

    Article  CAS  Google Scholar 

  45. Chuu DS, Dai CM, Hsieh WF, Tsai CT (1991) J Appl Phys 69:8402

    Article  CAS  Google Scholar 

  46. Zuo J, Xu C, Liu X, Wang C, Wang C, Hu Y, Qian Y (1994) J Appl Phys 75:1835

    Article  CAS  Google Scholar 

  47. Dieguez A, Romano-Rodriguez A, Vilà A, Morante JR (2001) J Appl Phys 90:1550

    Article  CAS  Google Scholar 

  48. Moulder JF, Stickle WF, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden Priaerie

  49. Atanasoska L, Atanasoski R, Trasatti S (1990) Vacuum 40:91

    Article  CAS  Google Scholar 

  50. Da Silva LM, Franco DV, De Faria LA, Boodts JFC (2004) Electrochim Acta 49:3977

    Article  CAS  Google Scholar 

  51. Hara M, Assami K, Hashimoto K, Matsumoto T (1983) Electrochim Acta 28:1073

    Article  CAS  Google Scholar 

  52. Chen RS, Chang HM, Huang YS, Tsai DS, Chattopadhyay S, Chen KH (2004) J Cryst Growth 271:105

    Article  CAS  Google Scholar 

  53. Koetz R, Neff H, Stucki S (1984) J Electrochem Soc 131:72

    Article  CAS  Google Scholar 

  54. Ardizzone S, Carugati A, Trasatti S (1981) J Electroanal Chem 126:287

    Article  CAS  Google Scholar 

  55. Ardizzone S, Fregonara G, Trasatti S (1990) Electrochim Acta 35:263

    Article  CAS  Google Scholar 

  56. Krstajic N, Trasatti S (1998) J Appl Electrochem 28:1291

    Article  CAS  Google Scholar 

  57. Fierro S, Ouattara L, Herrera Calderon E, Comninellis Ch (2008) Electrochem Comm 10:955

    Article  CAS  Google Scholar 

  58. Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Electrochim Acta 49:313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Ministry of Education, University and Research and Università degli Studi di Milano (FIRST Funds) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Minguzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardizzone, S., Bianchi, C.L., Borgese, L. et al. Physico-chemical characterization of IrO2–SnO2 sol-gel nanopowders for electrochemical applications. J Appl Electrochem 39, 2093–2105 (2009). https://doi.org/10.1007/s10800-009-9895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9895-1

Keywords

Navigation