Skip to main content

Electrochemical technique to measure Fe(II) and Fe(III) concentrations simultaneously


An electrochemical technique is presented to simultaneously determine the concentrations of Fe(II) and Fe(III) ions using a rotating disk electrode. The method consists of using a steady state polarization technique where the developed limiting currents are measured and related to the concentration of the cations present in solution. Two linear equations were derived which correlate the limiting currents with the concentrations of the pair cations. The equations are used to easily and simultaneously determine the concentrations of the multivalent species. The precision and accuracy of the technique were found to be comparable to other advanced methods for the quantification of cations, such as capillary zone electrophoresis and spectro-photometric sequential injection analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


A :

Surface area of the electrode (cm2)

C :

Concentration of the solution (mol cm−3)

C Fe(II) :

Concentration of Fe(II) (mM),

C Fe(III) :

Concentration of Fe(III) (mM)

C cal :

Calculated concentration (mM)

C st :

Concentration of standard solution (mM)

D :

Diffusion coefficient (cm2 s−1)

E a :

Absolute error (mM)

F :

Faraday’s constant, 96485 C mol−1

i l :

Limiting current (A)

\( i_{\rm{LL}} \) :

Lower limiting current (mA)

\( i_{{_{\rm{LL}} }}^{0} \) :

Zero cathodic limiting current (mA)

\( i_{\rm{UL}} \) :

Upper limiting current (mA)

\( i_{{_{\rm{UL}} }}^{0} \) :

Zero anodic limiting current (mA)

\( k_{1} \) :

Constant of the equation for rotation rate

n :

Number of electrons transferred

\( N \) :

Number of sample solutions


Relative error


Kinetic viscosity of the solution (cm2 s−1)


Angular velocity of the rotating electrode (rad s−1)

ωa :

Rotation rate of the rotating electrode (rpm)


  1. Ugo P, Moretto LM, Rudello D, Birriel E, Chevalet J (2001) Electroanalysis 13:661

    Article  CAS  Google Scholar 

  2. Kanai Y (1990) Analyst 115:809

    Article  CAS  Google Scholar 

  3. Pehkonen SO, Erel Y, Hoffmann MR (1992) Environ Sci Technol 26:1731

    Article  CAS  Google Scholar 

  4. Blain S, Treguer P (1995) Anal Chim Acta 308:425

    Article  CAS  Google Scholar 

  5. Haghighi B, Safavi A (1997) Anal Chim Acta 354:43

    Article  CAS  Google Scholar 

  6. van Staden JF, Matoetoe MC (1998) Anal Chim Acta 376:325

    Article  Google Scholar 

  7. Stozhko NY, Inzhevatova OV, Kolyadina LI (2005) J Anal Chem 60:668

    Article  CAS  Google Scholar 

  8. Patil P, De Abreu Y, Botte GG (2006) J Power Sources 158:368

    Article  CAS  Google Scholar 

  9. Sathe N, Botte GG (2006) J Power Sources 161:513

    Article  CAS  Google Scholar 

  10. Szydlowski FJ, Dunmire DL, Peck EE, Eggers RL, Matson WR (1981) Anal Chem 53:193

    Article  CAS  Google Scholar 

  11. Baumann EW (1992) Analyst 117:913

    Article  CAS  Google Scholar 

  12. Takagai Y, Igarashi S (2003) Anal Sci 19:1207

    Article  CAS  Google Scholar 

  13. Mulaudzi LV, van Staden JF, Stefan RI (2002) Anal Chim Acta 467:35

    Article  CAS  Google Scholar 

  14. Pozdniakova S, Padarauskas A, Schwedt G (1997) Anal Chim Acta 351:41

    Article  CAS  Google Scholar 

  15. Ugo P, Moretto LM, De Boni A, Scopece P, Mazzocchin GA (2002) Anal Chim Acta 474:147

    Article  CAS  Google Scholar 

  16. Jin X, Botte GG (2007) J Power Sources 171:826

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gerardine G. Botte.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, X., Botte, G.G. Electrochemical technique to measure Fe(II) and Fe(III) concentrations simultaneously. J Appl Electrochem 39, 1709–1717 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: