Skip to main content
Log in

Supercapacitive properties of composite electrodes consisting of polyaniline, carbon nanotube, and RuO2

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Three types of composite supercapacitor electrodes were prepared; electroactive polyaniline (PANI), PANI/multi-walled carbon nanotube (CNT), and PANI/CNT/RuO2. Specifically, the PANI and PANI/CNT were prepared by polymerization, and PANI/CNT/RuO2 was prepared by electrochemical deposition of RuO2 on the PANI/CNT matrix. Cyclic voltammetry between −0.2 and 0.8 V (vs. Ag/AgCl) at various scan rates was performed to investigate the supercapacitive properties in an electrolyte solution of 1.0 M H2SO4. The PANI/CNT/RuO2 electrode showed the highest specific capacitance at all scan rates (e.g., 441 and 392 F g−1 at 100 and 1,000 mV s−1, respectively). In contrast, the PANI/CNT electrode demonstrated the best capacitance retention (66%) after 104 cycles. Additional analysis including morphology and complex impedance spectroscopy suggested that with small loading of RuO2, an increase in capacitance was observed, but dissolution and/or detachment of RuO2 species from the electrode might occur during cycling to reduce the cycle performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fusalba F, Gouérec P, Villers D, Bélanger D (2001) J Electrochem Soc 148:A1

    Article  CAS  Google Scholar 

  2. Ryu KS, Kim KM, Park N-G, Park YJ, Chang SH (2002) J Power Sources 103:305

    Article  CAS  Google Scholar 

  3. Ko JM, Song RY, Yu HJ, Yoon JW, Kim BG, Kim DW (2004) Electrochim Acta 50:873

    Article  CAS  Google Scholar 

  4. Ryu KS, Jeong SK, Joo J, Kim KM (2007) J Phys Chem B 111:731

    Article  CAS  Google Scholar 

  5. Ryu KS, Kim KM (2007) J Power Sources 165:420

    Article  CAS  Google Scholar 

  6. Zhang AQ, Cui CQ, Lee JY (1995) Synth Met 72:217

    Article  CAS  Google Scholar 

  7. Song RY, Park JH, Sivakkumar SR, Kim SH, Ko JM, Park D-Y, Jo SM, Kim DY (2007) J Power Sources 166:297

    Article  CAS  Google Scholar 

  8. Khomenko V, Frackowiak D, Béguin F (2005) Electrochim Acta 50:2499

    Article  CAS  Google Scholar 

  9. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Béguin F (2006) J Power Sources 153:413

    Article  CAS  Google Scholar 

  10. Gupta V, Miura N (2006) Electrochim Acta 52:1721

    Article  CAS  Google Scholar 

  11. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  12. Hu C-C, Huang Y-H (2001) Electrochim Acta 46:3431

    Article  CAS  Google Scholar 

  13. Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Nano Lett 6:2690

    Article  CAS  Google Scholar 

  14. Gujar TP, Shinde VR, Lokhande CD, Kim W-Y, Jung K-D, Joo O-S (2007) Electrochem Commun 9:504

    Article  CAS  Google Scholar 

  15. Hu C-C, Chen W-C (2004) Electrochim Acta 49:3469

    Article  CAS  Google Scholar 

  16. Dandekar MS, Arabale G, Vijayamohanan K (2005) J Power Sources 141:198

    Article  CAS  Google Scholar 

  17. Min M, Machida K, Jang JH, Naoi K (2006) J Electrochem Soc 153:A334

    Article  CAS  Google Scholar 

  18. Arabale G, Wagh D, Kulkarni M, Mulla IS, Vernekar SP, Vijayamohanan K, Rao AM (2003) Chem Phys Lett 376:207

    Article  CAS  Google Scholar 

  19. Kim I-H, Kim J-H, Kim K-B (2005) Electrochem Solid State Lett 8:A369

    Article  CAS  Google Scholar 

  20. Kim I-H, Kim J-H, Lee Y-H, Kim K-B (2005) J Electrochem Soc 152:A2170

    Article  Google Scholar 

  21. Kim Y-T, Tadai K, Mitani T (2005) J Mater Chem 15:4914

    Article  CAS  Google Scholar 

  22. Lee BJ, Sivakkumar SR, Ko JM, Kim JH, Jo SM, Kim DY (2007) J Power Sources 168:546

    Article  CAS  Google Scholar 

  23. Hong J-I, Yeo I-H, Paik W-K (2001) J Electrochem Soc 148:A156

    Article  CAS  Google Scholar 

  24. Huang L-M, Lin H-Z, Wen T-C, Gopalan A (2006) Electrochim Acta 52:1058

    Article  CAS  Google Scholar 

  25. Sivakkumar SR, Kim D-W (2007) J Electrochem Soc 154:A134

    Article  CAS  Google Scholar 

  26. Ryu KS, Wu X, Lee Y-G, Chang SH (2003) J Appl Polym Sci 89:1300

    Article  CAS  Google Scholar 

  27. Hu C-C, Chen E, Lin J-Y (2002) Electrochim Acta 47:2741

    Article  CAS  Google Scholar 

  28. Hu C-C, Chu C-H (2001) J Electroanal Chem 503:105

    Article  CAS  Google Scholar 

  29. Genies EM, Lapkowski M (1987) J Electroanal Chem 220:67

    Article  CAS  Google Scholar 

  30. Focke WW, Wnek GE, Wei Y (1987) J Phys Chem 91:5813

    Article  CAS  Google Scholar 

  31. Lin S-M, Wen T-C (1994) Electrochim Acta 39:393

    Article  CAS  Google Scholar 

  32. Liu T, Sreekumar TV, Kumar S, Hauge RH, Smalley RE (2003) Carbon 41:2440

    Article  CAS  Google Scholar 

  33. Zhou C, Kumar S, Doyle CD, Tour JM (2005) Chem Mater 17:1997

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors (JMK) appreciates the financial support for this work through the World-Class University Program (R33-2008-000-10147-0) from the Korean Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jang Myoun Ko or Kwang Man Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, J.M., Ryu, K.S., Kim, S. et al. Supercapacitive properties of composite electrodes consisting of polyaniline, carbon nanotube, and RuO2 . J Appl Electrochem 39, 1331–1337 (2009). https://doi.org/10.1007/s10800-009-9800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9800-y

Keywords

Navigation