Skip to main content
Log in

Effects of [HMIM]HSO4 and [OMIM]HSO4 on the electrodeposition of zinc from sulfate electrolytes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effects of the organic additives 1-hexyl-3-methylimidazolium hydrogen sulfate ([HMIM]HSO4) and 1-octyl-3-methylimidazolium hydrogen sulfate ([OMIM]HSO4) on current efficiency (CE), power consumption (PC), polarization behavior of the cathode, deposit morphology, and crystallographic orientation during electrodeposition of zinc from acidic sulfate solution were investigated. The results were compared with those of a common industrial additive, gum arabic. Addition of these additives increases current efficiency, decreases power consumption, and improves the surface morphology at lower concentrations. Both the additives showed similar polarization behavior to gum arabic and the extent of polarization was in the order: gum arabic > [OMIM]HSO4 > [HMIM]HSO4. The nature of the electrode reactions was studied through measurements of Tafel slopes, transfer coefficients, and exchange current densities. Data obtained from X-ray diffractogram revealed that the presence of any of these additives did not change the structure of the electrodeposited zinc but affected the crystallographic orientation of the crystal planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ivanov I (2004) Hydrometallurgy 72:73

    Article  CAS  Google Scholar 

  2. Mackinnon DJ, Brannen JM, Kerby RC (1979) J Appl Electrochem 9:55

    Article  CAS  Google Scholar 

  3. Mackinnon DJ, Brannen JM, Kerby RC (1979) J Appl Electrochem 9:71

    Article  CAS  Google Scholar 

  4. Ault AR, Frazer EJ (1988) J Appl Electrochem 18:583

    Article  CAS  Google Scholar 

  5. Muresan L, Maurin G, Oniciu L, Gaga D (1996) Hydrometallurgy 43:345

    Article  CAS  Google Scholar 

  6. Robinson DJ, O′Keefe TJ (1976) J Appl Electrochem 6:1

    Article  CAS  Google Scholar 

  7. MacKinnon DJ, Brannen JM (1977) J Appl Electrochem 7:451

    Article  CAS  Google Scholar 

  8. MacKinnon DJ, Brannen JM, Fenn PL (1987) J Appl Electrochem 17:1129

    Article  CAS  Google Scholar 

  9. Das SC, Singh P, Hefter GT (1996) J Appl Electrochem 26:1245

    Article  CAS  Google Scholar 

  10. Das SC, Singh P, Hefter GT (1997) J Appl Electrochem 27:738

    Article  CAS  Google Scholar 

  11. Sato R (1959) J Electrochem Soc 106:206

    Article  CAS  Google Scholar 

  12. Piron DL, Mathieu D, Amboise MD (1987) Can J Chem Eng 65:685

    Article  CAS  Google Scholar 

  13. Hosny AY (1993) Hydrometallurgy 32:261

    Article  CAS  Google Scholar 

  14. Karavasteva M, Karaivanov SA (1993) J Appl Electrochem 23:763

    Article  CAS  Google Scholar 

  15. Karavasteva M (1994) Hydrometallurgy 35:391

    Article  CAS  Google Scholar 

  16. Tripathy BC, Das SC, Singh P, Hefter GT (1997) J Appl Electrochem 27:673

    Article  CAS  Google Scholar 

  17. Tripathy BC, Das SC, Singh P, Hefter GT (1999) J Appl Electrochem 29:1229

    Article  CAS  Google Scholar 

  18. Tripathy BC, Das SC, Hefter GT, Singh P (1998) J Appl Electrochem 28:915

    Article  CAS  Google Scholar 

  19. Tripathy BC, Das SC, Singh P, Hefter GT, Misra VN (2004) J Electroanal Chem 565:49

    Article  CAS  Google Scholar 

  20. Forsyth SA, Pringle JM, MacFarlane DR (2004) Aust J Chem 57:113

    Article  CAS  Google Scholar 

  21. Endres F, El Abedin SZ, Matter S (2006) Phys Chem Chem Phys 8:2101

    Article  CAS  Google Scholar 

  22. Jiménez AE, Bermúdez MD, Iglesias P, Carrión FJ, Martínez-Nicolás G (2006) Wear 260:766

    Article  CAS  Google Scholar 

  23. Kamimura H, Kubo T, Minami I, Mori S (2007) Tribo Int 40:620

    Article  CAS  Google Scholar 

  24. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  25. Zhou Y (2005) Curr Nanosci 1:35

    Article  CAS  Google Scholar 

  26. Xiao XH, Zhao L, Liu X, Jiang SX (2004) Anal Chim Acta 519:207

    Article  CAS  Google Scholar 

  27. Zhang CD, Malhotra SV (2005) Talanta 67:560

    Article  CAS  Google Scholar 

  28. Zhang QB, Hua YX (2008) Effects of 1-Butyl-3-Methylimidazolium Hydrogen Sulfate-[BMIM]HSO4 on zinc electrodeposition from acidic sulfate electrolyte. J Appl Electrochem. doi:10.1007/s10800-008-9665-5

  29. Shi SC, Yi PG, Cao CZ, Wang XY (2005) J Chem Ind Eng China 56:1112

    CAS  Google Scholar 

  30. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156

    Article  CAS  Google Scholar 

  31. Whitehead JA, Lawrance GA, McCluskey A (2004) Aust J Chem 57:151

    Article  CAS  Google Scholar 

  32. Stupnisek-Lisac E, Podbrscek S, Soric T (1994) J Appl Electrochem 24:779

    Article  CAS  Google Scholar 

  33. Mohanty US, Tripathy BC, Singh P, Das SC (2001) J Appl Electrochem 31:969

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank XinSheng Li for assistance in SEM and gratefully acknowledge the financial support of the National Natural Science Foundation of China (Project No. 50564006) and the Natural Science Foundation of Yunnan Province (Project No. 2005E0004Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Hua, Y. Effects of [HMIM]HSO4 and [OMIM]HSO4 on the electrodeposition of zinc from sulfate electrolytes. J Appl Electrochem 39, 1185–1192 (2009). https://doi.org/10.1007/s10800-009-9783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9783-8

Keywords

Navigation