Skip to main content
Log in

Electrocatalytic oxidation of glutathione at carbon paste electrode modified with 2,7-bis (ferrocenyl ethyl) fluoren-9-one: application as a voltammetric sensor

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrooxidation of glutathione (GSH) was studied at the surface of 2,7-bis (ferrocenyl ethyl) fluoren-9-one modified carbon paste electrode (2,7-BFEFMCPE). Cyclic voltammetry (CV), double potential-step chronoamperometry, and differential pulse voltammetry (DPV) were used to investigate the suitability of this ferrocene derivative as a mediator for the electrocatalytic oxidation of GSH in aqueous solutions with various pH. Results showed that pH 7.00 is the most suitable pH for this purpose. At the optimum pH, the oxidation of GSH at the surface of this modified electrode occurs at a potential of about 0.410 V versus Ag|AgCl|KClsat. The kinetic parameters such as electron transfer coefficient, α = 0.61, and rate constant for the chemical reaction between GSH and redox site in 2,7-BFEFMCPE, k h = 1.73 × 103 cm3 mol−1 s−1, were also determined using electrochemical approaches. Also, the apparent diffusion coefficient, D app, for GSH was found to be 5.0 × 10−5 cm2 s−1 in aqueous buffered solution. The electrocatalytic oxidation peak current of GSH showed a linear dependence on the glutathione concentration, and linear calibration curves were obtained in the ranges of 5.2 × 10−5 M to 4.1 × 10−3 M and 9.2 × 10−7 M to 1.1 × 10−5 M with cyclic voltammetry and differential pulse voltammetry methods, respectively. The detection limits (3σ) were determined as 1.4 × 10−5 M and 5.1 × 10−7 M for the CV and DPV methods, respectively. This method was also examined as a selective, simple, and precise new method for voltammetric determination of GSH in real sample such as hemolysed erythrocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meister A, Larsson A (1989) The metabolic bases on inherited disease, 6th edn. McGraw-Hill, New York

    Google Scholar 

  2. Ganda OP (1980) Diabetes 29:29

    Google Scholar 

  3. Mickel HS, Horbar J (1973) Lipids 9:68

    Article  Google Scholar 

  4. Clavind J, Hartman S, Clemmensen J (1952) Acta Pathol Microbiol Scand 30:1

    Google Scholar 

  5. Fujii S, Dale GL, Beutler E (1984) Blood 63:1096

    CAS  Google Scholar 

  6. Meister A (1981) Trends Biochem Sci 23:1

    Google Scholar 

  7. Nagendra P, Yathirajan HS, Rangappa KS (2002) J Indian Chem Soc 79:602

    CAS  Google Scholar 

  8. Raggi M, Nobile L, Giovannini AG (1991) J Pharm Biomed Anal 9:1037

    Article  CAS  Google Scholar 

  9. Kamata K, Takahashi M, Terajima K, Nishijima M (1995) Analyst 120:2755

    Article  CAS  Google Scholar 

  10. Liang SC, Wang H, Zhang ZM, Zhang X, Zhang HS (2002) Anal Chim Acta 451:211

    Article  CAS  Google Scholar 

  11. Zhang JY, Hu ZD, Chen XG (2005) Talanta 65:986

    Article  CAS  Google Scholar 

  12. Kanďár R, Žáková P, Lotková H, Kučera O, Červinková Z (2007) J Pharm Biomed Anal 43:1382

    Article  Google Scholar 

  13. Katrusiak AE, Paterson PG, Kamencic H, Shoker A, Lyon AW (2001) J Chromatogr B Biomed Appl 758:207

    Article  CAS  Google Scholar 

  14. Xu F, Wang L, Gao M, Jin J (2002) Anal Bioanal Chem 372:791

    Article  CAS  Google Scholar 

  15. Causse E, Malatray P, Calaf R, Chariots P, Candito M, Bayle C, Valdiguie P, Salvayre R, Couderc F (2000) Electrophoresis 21:2074

    Article  CAS  Google Scholar 

  16. Rabenstein DL, Brown DW, McNeil CJ (1985) Anal Chem 57:2294

    Article  CAS  Google Scholar 

  17. Satoh I, Arakawa S, Okamoto A (1988) Anal Chim Acta 214:415

    Article  CAS  Google Scholar 

  18. Jin WR, Zhan X, Xian L (2000) Electroanalysis 12:858

    Article  CAS  Google Scholar 

  19. Banica FG, Fogg AG, Moreira JC (1995) Talanta 42:227

    Article  CAS  Google Scholar 

  20. Tang H, Chen J, Nie L, Tao S, Kuang Y (2006) Electrochim Acta 51:3046

    Article  CAS  Google Scholar 

  21. Compagnone D, Federici G, Scarciglia L (1993) Biosen Bioelectron 8:257

    Article  CAS  Google Scholar 

  22. Huang TH, Kuwana T, Warsinke A (2002) Biosen Bioelectron 17:1107

    Article  CAS  Google Scholar 

  23. Wang Sh, Ma H, Li J, Chen X, Bao Z, Sun Sh (2006) Talanta 70:518

    Article  CAS  Google Scholar 

  24. El-Kosasy AM, Shehata AM, Hassan NY, Fayed AS, El-Zeany BA (2005) Talanta 66:746

    Article  CAS  Google Scholar 

  25. Gong X, Li HL (2000) J Electrochem Soc 147:238

    Article  CAS  Google Scholar 

  26. Calvo-Marzal P, Chumbimuni-Torres KY, HöeKubota LT (2006) Clin Chim Acta 371:152

    Article  CAS  Google Scholar 

  27. White PC, Lawrence NS, Davis J, Compton RG (2002) Electroanalysis 14:89

    Article  CAS  Google Scholar 

  28. Gracheva S, Digga A, Livingstone C, Davis J (2004) Electroanalysis 17:205

    Article  Google Scholar 

  29. Pham MC, Dubois JE (1986) J Electroanal Chem 199:153

    Article  Google Scholar 

  30. Almeida CMVB, Giannetti BF (2002) Electrochem Commun 4:985

    Article  CAS  Google Scholar 

  31. Raoof JB, Ojani R, Ramine M (2007) Electroanalysis 19:597

    Article  CAS  Google Scholar 

  32. Liu L, Song J (2006) Anal Biochem 354:22

    Article  CAS  Google Scholar 

  33. Kozan JVB, Silva RP, Serrano SHP, Lim AWO, Angnes L (2007) Anal Chim Acta 591:200

    Article  CAS  Google Scholar 

  34. Hosseinzadeh R, Ph.D Thesis (1999) Justus-Liebig-Universitate, Giessen, Germany

  35. Ellman GL (1959) Archives of Biochem Biophy 82:70

    Article  CAS  Google Scholar 

  36. Raoof JB, Ojani R, Beitollahi H, Hossienzadeh R (2006) Electroanalysis 18:1193

    Article  CAS  Google Scholar 

  37. Moore RR, Banks CE, Compton RG (2004) Analyst 129:755

    Article  CAS  Google Scholar 

  38. Pournaghi-Azar MH, Razmi-Nerbin H (2000) J Electroana. Chem 488:17

    Article  CAS  Google Scholar 

  39. Takeuchi ES, Murray R (1985) J Electroanal Chem 189:49

    Article  Google Scholar 

  40. Galus Z (1976) Fundamentals of Electrochemical analysis. Ellis Horwood, New York

    Google Scholar 

  41. Tang H, Chen J, Nie L, Yao S, Kuang Y (2006) Electrochem Acta 51:3046

    Article  CAS  Google Scholar 

  42. Inoue T, Kirchhof JR (2000) Anal Chem 72:5755

    Article  CAS  Google Scholar 

  43. Calvo-Marzal P, Chumbimuni-Torres KY, Hoehr NF, Kubota LT (2006) Clin Chemi Acta 371:152

    Article  CAS  Google Scholar 

  44. Westerman MP, Zhang Y, McConnell JP, Chezick PA, Neelam R, Freels S, Feldman LS, Allen S, Baridi R, Feldman LE, Fung LWM (2000) Amer J Hemato 65:174

    Article  CAS  Google Scholar 

  45. Reid ME, Badaloo A, Forrester T, Jahoor F (2006) Am J Physiol Endocrinol Metab 291:3

    Article  Google Scholar 

  46. Mills BJ, Lang CA (1996) Biochem Pharmacol 52:401

    Article  CAS  Google Scholar 

  47. Jocelyn PC (1973) Biochemistry of SH Group. Academic Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Raoof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raoof, J.B., Ojani, R. & Karimi-Maleh, H. Electrocatalytic oxidation of glutathione at carbon paste electrode modified with 2,7-bis (ferrocenyl ethyl) fluoren-9-one: application as a voltammetric sensor. J Appl Electrochem 39, 1169–1175 (2009). https://doi.org/10.1007/s10800-009-9781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9781-x

Keywords

Navigation