Journal of Applied Electrochemistry

, Volume 40, Issue 4, pp 729–737 | Cite as

DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode

Original Paper

Abstract

The electrochemical oxidation of olive mill wastewater (OMW) over a Ti/RuO2 anode was studied by means of cyclic voltammetry and bulk electrolysis and compared with previous results over a Ti/IrO2 anode. Experiments were conducted at 300–1,220 mg L−1 initial chemical oxygen demand (COD) concentrations, 0.05–1.35 V versus SHE and 1.39–1.48 V versus SHE potential windows, 15–50 mA cm−2 current densities, 0–20 mM NaCl, Na2SO4, or FeCl3 concentrations, 80 °C temperature, and acidic conditions. Partial and total oxidation reactions occur with the overall rate being near first-order kinetics with respect to COD. Oxidation at 28 Ah L−1 and 50 mA cm−2 leads to quite high color and phenols removal (86 and 84%, respectively), elimination of ecotoxicity, and a satisfactory COD and total organic carbon reduction (52 and 38%, respectively). Similar performance can be achieved at the same charge (28 Ah L−1) using lower current densities (15 mA cm−2) but in the presence of various salts. For example, COD removal is less than 7% at 28 Ah L−1 in a salt-free sample, while addition of 20 mM NaCl results in 54% COD reduction. Decolorization of OMW using Ti/RuO2 anode seems to be independent of the presence of salts in contrast with Ti/IrO2 where addition of NaCl has a beneficial effect on decolorization.

Keywords

Cyclic voltammetry DSA Electrolysis OMW Phenols Ti/RuO2 

References

  1. 1.
    Chatzisymeon E, Dimou A, Mantzavinos D, Katsaounis A (2009) J Hazard Mater 167:268CrossRefGoogle Scholar
  2. 2.
    Mantzavinos D, Kalogerakis N (2005) Environ Int Recent Adv Biorem 31:289Google Scholar
  3. 3.
    Trasatti S (2000) Electrochim Acta 45:2377CrossRefGoogle Scholar
  4. 4.
    Comninellis Ch, Pulgarin C (2001) J Appl Electrochem 21:703CrossRefGoogle Scholar
  5. 5.
    Comninellis Ch, Pulgarin C (1993) J Appl Electrochem 23:108CrossRefGoogle Scholar
  6. 6.
    Comninellis Ch, Nerini A (1995) J Appl Electrochem 25:23CrossRefGoogle Scholar
  7. 7.
    Khoufi S, Aouissaoui H, Penninckx M, Sayadi S (2004) Water Sci Technol 49:97Google Scholar
  8. 8.
    Longhi P, Vodopivec B, Fiori G (2001) Ann Chim 91:169Google Scholar
  9. 9.
    Saracco G, Solarino L, Specchia V, Maja M (2001) Chem Eng Sci 56:1571CrossRefGoogle Scholar
  10. 10.
    Panizza M, Cerisola G (2006) Water Res 40:1179CrossRefGoogle Scholar
  11. 11.
    Israilides CJ, Vlyssides AG, Mourafeti VN, Karvouni G (1997) Bioresour Technol 61:163CrossRefGoogle Scholar
  12. 12.
    Giannis A, Kalaitzakis M, Diamadopoulos E (2007) J Chem Technol Biotechnol 82:663CrossRefGoogle Scholar
  13. 13.
    Gotsi M, Kalogerakis N, Psillakis E, Samaras P, Mantzavinos D (2005) Water Res 39:4177CrossRefGoogle Scholar
  14. 14.
    Un UT, Ugur S, Koparal AS, Ogutveren UB (2006) Sep Purif Technol 52:136CrossRefGoogle Scholar
  15. 15.
    Un UT, Altay U, Koparal AS, Ogutveren UB (2008) Chem Eng J 139:445CrossRefGoogle Scholar
  16. 16.
    Inan H, Dimoglo A, Simsek H, Karpuzcu M (2004) Sep Purif Technol 36:23CrossRefGoogle Scholar
  17. 17.
    Fóti G, Comninellis Ch (2004) In: White RE, Conway BE, Vayenas CG (eds) Modern aspects of electrochemistry, vol 37. Kluwer Academic/Plenum Publishers, New York, pp 87–130Google Scholar
  18. 18.
    Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) In: Abelson JN, Simon MI (eds) Oxidants and antioxidants, part A, Methods in enzymology, vol 299. Academic Press, San Diego, CA, pp 152–177Google Scholar
  19. 19.
    Mantzavinos D, Lauer E, Sahibzada M, Livingston AG, Metcalfe IS (2000) Water Res 3:1620CrossRefGoogle Scholar
  20. 20.
    Galizzioli D, Tantardini F, Trasatti S (1974) J Appl Electrochem 4:57CrossRefGoogle Scholar
  21. 21.
    Galizzioli D, Tantardini F, Trasatti S (1975) J Appl Electrochem 5:203CrossRefGoogle Scholar
  22. 22.
    Kapalka A, Fóti G, Comninellis Ch (2008) Electrochem Commun 10:607CrossRefGoogle Scholar
  23. 23.
    Fierro S, Nagel T, Baltruschat H, Comninellis Ch (2007) Electrochem Commun 9:1969CrossRefGoogle Scholar
  24. 24.
    Kotta E, Kalogerakis N, Mantzavinos D (2007) J Chem Technol Biotechnol 82:504CrossRefGoogle Scholar
  25. 25.
    Chatzisymeon E, Xekoukoulotakis NP, Coz A, Kalogerakis N, Mantzavinos D (2006) J Hazard Mater 137:998CrossRefGoogle Scholar
  26. 26.
    Saracco G, Solarino L, Aigotti R, Specchia V, Maja M (2000) Electrochim Acta 46:373CrossRefGoogle Scholar
  27. 27.
    Vercesi GP, Rolewicz J, Comninellis C, Hinder J (1991) Thermochim Acta 176:31CrossRefGoogle Scholar
  28. 28.
    Takasu Y, Yoshinaga N, Sugimoto W (2008) Electrochem Commun 10:668CrossRefGoogle Scholar
  29. 29.
    Feng YJ, Li XY (2002) Water Res 37:2399CrossRefGoogle Scholar
  30. 30.
    Panić VV, Dekanski AB, Vidaković TR, Mišković-Stanković VB, Javanović BŽ, Nikolić BŽ (2005) J Solid State Electrochem 9:43CrossRefGoogle Scholar
  31. 31.
    Comninellis Ch, Vercesi GP (1991) J Appl Electrochem 21:335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • N. Papastefanakis
    • 1
  • D. Mantzavinos
    • 1
  • A. Katsaounis
    • 1
  1. 1.Department of Environmental EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations