Skip to main content

Advertisement

Log in

Structural and photoelectrochemical characterization of oxide films formed on AISI 304 stainless steel

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The structural and photoelectrochemical characterization of thermally grown oxide films on stainless steel is performed by near field microscopy and photocurrent measurements. The results show that the film formed at highest temperature has a very small grain size with a small surface roughness. A decrease of the grain size with increasing temperature is obtained. The images obtained on oxide formed at low temperature show that the film compactness decreases with temperature especially at 50 °C where the film is partially formed. The results obtained by photocurrent measurements show an increase of the quantum efficiency with temperature. A band gap energy value around 2.3 eV is obtained whatever the nature of the film obtained. Plots of the quantum efficiency as a function of the energy incident light reveal the existence of a photocurrent peak located in the band gap region, at 1.9 eV, near the conduction band. The analysis of the photocurrent as a function of the applied potential reveals a Pool–Frenkel effect. The donor densities extracted from photoelectrochemical measurements are compared to those obtained in previous works by capacitance measurements. The investigation shows that the electronic structure of oxide films formed on stainless steel can be described on the basis of the band structure model developed for crystalline semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hakiki NE (2008) J Appl Electrochem 38:679–687

    Article  CAS  Google Scholar 

  2. Hakiki NE, Maachi B (2007) Phys Chem News 38:65–69

    CAS  Google Scholar 

  3. Wijesinghe TLSL, Blackwood DJ (2007) J Electrochem Soc 154:C16

    Article  CAS  Google Scholar 

  4. Ha HY, Park C, Kwon H (2007) Corros Sci 49:1266

    Article  CAS  Google Scholar 

  5. Jang HJ, Kwon HS (2006) J Electroanal Chem 590:120

    Article  CAS  Google Scholar 

  6. Kim DY, Ahn S, Kwon H (2006) Thin Solid Films 513:212

    Article  CAS  Google Scholar 

  7. Jang H, Park C, Kwon H (2005) Electrochim Acta 50:3503

    Article  CAS  Google Scholar 

  8. Ahn SJ, Kwon HS (2004) Electrochim Acta 49:3347

    Article  CAS  Google Scholar 

  9. Cho EA, Kwon HS, Macdonald DD (2002) Electrochim Acta 47:1661

    Article  CAS  Google Scholar 

  10. Ferreira MGS, Da Cunha Belo M, Hakiki NE, Goodlet G, Montemor MF, Simões AMP (2002) J Braz Chem Soc 13:433

    CAS  Google Scholar 

  11. Kim JS, Cho EA, Kwon HS (2001) Corros Sci 43:1403

    Article  CAS  Google Scholar 

  12. Kim JS, Cho EA, Kwon HS (2001) Electrochim Acta 47:415

    Article  CAS  Google Scholar 

  13. Stimming U (1986) Electrochim Acta 31:415

    Article  CAS  Google Scholar 

  14. Schmuki P, Bohni H (1992) J Eleclrochem Soc 139:1908

    Article  CAS  Google Scholar 

  15. Schmuki P, Bückler M, Virtanen S, Böhni H, Müller R, Gauckler LJ (1995) J Electrochem Soc 142:3336

    Article  CAS  Google Scholar 

  16. Searson PC, Latanision RM, Stimming U (1988) J Electrochem Soc 135:1358

    Article  CAS  Google Scholar 

  17. Chen CT, Cahan BD (1982) J Electrochem Soc 129:17

    Article  CAS  Google Scholar 

  18. Sato N, Kudo K, Noda T (1971) Electrochim Acta 16:1909

    Article  CAS  Google Scholar 

  19. Gerischer H (1989) Corros Sci 29:191

    Article  CAS  Google Scholar 

  20. Hakiki NE, Montemor MF, Ferreira MGS, Da Cunha Belo M (2000) Corros Sci 42:687

    Article  CAS  Google Scholar 

  21. Montemor MF, Ferreira MGS, Hakiki NE, Da Cunha Belo M (2000) Corros Sci 42:1635

    Article  CAS  Google Scholar 

  22. Da Cunha Belo M, Walls M, Hakiki NE, Corset J, Picquenard E, Sagon G, Nöel D (1998) Corros Sci 40:447

    Article  Google Scholar 

  23. Da Cunha Belo M, Rondot B, Compere C, Montemor MF, Simöes AMP, Ferreira MGS (1998) Corros Sci 40:481

    Article  Google Scholar 

  24. Hakiki NE, Boudin S, Rondot B, Da Cunha Belo M (1995) Corros Sci 37:1809

    Article  CAS  Google Scholar 

  25. Di Paola A, Di Quarto F, Sunseri C (1986) Corros Sci 26:935

    Article  Google Scholar 

  26. Ferreira MGS, Hakiki NE, Goodlet G, Faty S, Simöes AMP, Da Cunha Belo M (2001) Electrochim Acta 46:3767

    Article  CAS  Google Scholar 

  27. Da Cunha Belo M, Hakiki NE, Ferreira MGS (1999) Electrochim Acta 44:2473

    Article  Google Scholar 

  28. Simöes AMP, Ferreira MGS, Lorang G, Da Cunha Belo M (1991) Electrochim Acta 36:315

    Article  Google Scholar 

  29. Di Paola A (1989) Electrochim Acta 34:203

    Article  Google Scholar 

  30. Hakiki NE, Da Cunha Belo M, Simöes AMP, Ferreira MGS (1999) J Electrochem Soc 146:807

    Article  CAS  Google Scholar 

  31. Hakiki NE, Da Cunha Belo M, Simöes AMP, Ferreira MGS (1998) J Electrochem Soc 145:3821

    Article  CAS  Google Scholar 

  32. Schmuki P, Virtanen S, Isaacs HS, Ryan MP, Davenport AJ, Böhni H, Stenberg T (1998) J Electrochem Soc 145:791

    Article  CAS  Google Scholar 

  33. Hakiki NE, Da Cunha Belo M (1996) J Electrochem Soc 143:3088

    Article  CAS  Google Scholar 

  34. Simöes AMP, Ferreira MGS, Rondot B, Da Cunha Belo M (1990) J Electrochem Soc 137:82

    Article  Google Scholar 

  35. Sunseri C, Piazza S, Di Quarto F (1990) J Electrochem Soc 137:2411

    Article  CAS  Google Scholar 

  36. Schmuki P, Böhni H (1989) J Electrochem Soc 139:7

    Google Scholar 

  37. Sunseri C, Piazza S, Di Paola A, Di Quarto F (1987) J Electrochem Soc 134:2410

    Article  CAS  Google Scholar 

  38. Hakiki NE, Da Cunha Belo M (1995) CR Acad Sci Paris 320(II):613

    CAS  Google Scholar 

  39. Hakiki NE, Da Cunha Belo M (1993) CR Acad Sci Paris 317(II):457

    CAS  Google Scholar 

  40. Delnick FM, Hackermann N (1979) J Electrochem Soc 126:732

    Article  CAS  Google Scholar 

  41. Azumi K, Ohtsuka T, Sato N (1987) J Electrochem Soc 134:1352

    Article  CAS  Google Scholar 

  42. Stimming U, Schultze JW (1976) Ber Bunsenges Phys Chem 8:129

    Google Scholar 

  43. Stimming U (1987) Langmuir 3:423

    Article  CAS  Google Scholar 

  44. Dean MH, Stimming U (1987) J Electroanal Chem 228:135

    Article  CAS  Google Scholar 

  45. Lorang G, Da Cunha Belo M, Simões AMP, Ferreira MGS (1994) J Electrochem Soc 141:3347

    Article  CAS  Google Scholar 

  46. Lillerud KP, Kofstad P (1980) J Electrochem Soc 127:2397

    Article  CAS  Google Scholar 

  47. Blazey KW (1972) Solid State Commun 11:317

    Article  Google Scholar 

  48. Young EWA, Gerretsen JH, de Wit JHW (1987) J Electrochem Soc 134:2257

    Article  CAS  Google Scholar 

  49. Dare-Edwards MP, Goodenough JB, Hamnett A, Nicholson ND (1981) J Chem Soc Faraday Trans 2:643

    Google Scholar 

  50. Wilhelm SM, Hackerman N (1981) J Electrochem Soc 128:1668

    Article  CAS  Google Scholar 

  51. Stimming U (1983) In: Froment M (ed) Passivity of metals and semi-conductors. Elsevier, Amsterdam, p 477

  52. Schultze JW, Stimming U (1982) Ber Bunsenges Phys Chem 86:276

    Google Scholar 

  53. Wilhelm SM, Yun KS, Ballanger LW, Hackermann N (1979) J Electrochem Soc 126:419

    Article  CAS  Google Scholar 

  54. Gillot B, Rousset A (1986) J Electroanal Chem 65:322

    CAS  Google Scholar 

  55. Wilson RH (1977) J Appl Phys 48:4292

    Article  CAS  Google Scholar 

  56. Reichmann J (1980) Appl Phys Lett 36:574

    Article  Google Scholar 

  57. Reiss H (1978) J Electrochem Soc 125:937

    Article  CAS  Google Scholar 

  58. Pleskov YuV, Gurevich YuYa (1986) Semiconductor photoelectrochemistry. Consultants Bureau, New York

    Google Scholar 

  59. Morrison SR (1980) Electrochemistry of Semiconductors and Oxidized metal Electrodes. Plenum Press, New York

    Google Scholar 

  60. Morrison SR (1977) The chemical physics of surfaces. Plenum Press, New York

    Google Scholar 

  61. Myamlin VA, Pleskov YuV (1967) Electrochemistry of semiconductors. Plenum Press, New York

    Google Scholar 

  62. McAlear JF, Peter LM (1980) Faraday Discuss Chem Soc 70:67

    Article  Google Scholar 

  63. Di Quarto F, Di Paola A, Sunseri C (1981) Electrochem Acta 26:1177

    Article  Google Scholar 

  64. Peter LM (1987) Ber Bunsenges Phys Chem 91:419

    CAS  Google Scholar 

  65. Rauf IA, Walls MG (1991) Ultramicrosc 127:737

    Google Scholar 

  66. Gärtner WW (1959) Phys Rev 116:84

    Article  Google Scholar 

  67. Butler MA (1977) J Appl Phys 48:1914

    Article  CAS  Google Scholar 

  68. Pankove JI (1975) Optical processes in semiconductors. Dover, NY

  69. Bube RH (1967) Photoconductivity of solids. Wiley, NY

    Google Scholar 

  70. Hakiki NE, Simöes AMP, Ferreira MGS, Da Cunha Belo M (2000) Port Electrochim Acta 18:113

    Article  CAS  Google Scholar 

  71. Montemor MF, Ferreira MGS, Hakiki NE, Da Cunha Belo M (1998) Mater Sci Forum 289:1139

    Article  Google Scholar 

  72. Wilhelm SM, Hackermann N (1979) J Electrochem Soc 128:1668

    Article  Google Scholar 

  73. Wilhelm SM, Tanizawa Y, Liu CY, Hackermann N (1982) Corros Sci 22:791

    Article  CAS  Google Scholar 

  74. Di Quarto F, Russo G, Sunseri C, Di Paola A (1982) J Chem Soc Faraday Trans I 78:3433

    Article  Google Scholar 

  75. Di Quarto F, Di Paola A, Piazza S, Sunseri C (1985) Solar Energy Mater 11:419

    Article  Google Scholar 

  76. Di Quarto F, Piazza S, Sunseri C (1985) Electrochem Acta 30:3

    Article  Google Scholar 

  77. Abrantes LM, Peter LM (1983) J Electroanal Chem 150:593

    Article  CAS  Google Scholar 

  78. Dean MH, Stimming U (1989) Corros Sci 29:199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Hakiki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakiki, N.E. Structural and photoelectrochemical characterization of oxide films formed on AISI 304 stainless steel. J Appl Electrochem 40, 357–364 (2010). https://doi.org/10.1007/s10800-009-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-0004-2

Keywords

Navigation