Journal of Applied Electrochemistry

, Volume 39, Issue 7, pp 1097–1103 | Cite as

Design of an “all solid-state” supercapacitor based on phosphoric acid doped polybenzimidazole (PBI) electrolyte

  • Dhanraj Rathod
  • Meenu Vijay
  • Nazrul Islam
  • Ramaiyan Kannan
  • Ulhas Kharul
  • Sreekumar Kurungot
  • Vijayamohanan PillaiEmail author
Original Paper


The effectiveness of phosphoric acid doped polybenzimidazole as a polymer electrolyte membrane to fabricate an all solid-state super capacitor has been explored using hydrous RuO2/carbon composite electrodes (20 wt.%) of surface area 250 m2 g−1 with many intrinsic advantages. The electrochemical evaluation of these super capacitors through cyclic voltammetry, charge/discharge and impedance measurements demonstrate the utility of this type of thin, compact and flexible supercapacitor capable of functioning at 150 °C to yield a maximum capacitance of about 290 F g−1 along with a life of more than 1,000 cycles. A power density of 300 W kg−1 and energy density of 10 Wh kg−1 have been accomplished although the equivalent series resistance (ESR) of about 3.7 Ω needs to be reduced further for high rated applications.


RuO2/carbon composite PBI electrolyte Electrochemical supercapacitor Energy storage device Electrochemical characterization 



The authors are grateful to the Department of Science and Technology (TIFAC wing), New Delhi, India, for financial support. RK thanks UGC for his fellowship.


  1. 1.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications, 2nd edn. Kluwer Academic Publisher, New YorkGoogle Scholar
  2. 2.
    Lee BJ, Sivakkumar SR, Ko JM, Kim JH, Seong MJ, Kim DY (2007) J Power Sources 168:546CrossRefGoogle Scholar
  3. 3.
    Adhyapak PV, Maddanimath T, Pethkar S, Chandwadkar AJ, Negi YS, Vijayamohanan K (2002) J Power Sources 109:105CrossRefGoogle Scholar
  4. 4.
    Shukla AK, Sampath S, Vijayamohanan K (2000) Current Sci 79:1656Google Scholar
  5. 5.
    Huggins RA (2000) Solid State Ionics 134:179CrossRefGoogle Scholar
  6. 6.
    Lin C, Ritter JA, Popov BN (1998) Electrochem Soc 145:4097CrossRefGoogle Scholar
  7. 7.
    Burke A (2000) J Power Sources 91:37CrossRefGoogle Scholar
  8. 8.
    Frackowiak E, Beguin F (2001) Carbon 40:1775CrossRefGoogle Scholar
  9. 9.
    Reddy A, Ramaprabhu S (2007) J Phys Chem C 111:7727CrossRefGoogle Scholar
  10. 10.
    Ye JS, Cui HF, Liu X, Lim TM, Zhang WD, Sheu FS (2005) Small 1:560CrossRefGoogle Scholar
  11. 11.
    Pushparaj VL, Shaijumon MM, Kumar A, Saravanababu M, Ci LJ, Vajtai R, Nalamasu O, Ajayan PM (2007) PNAS 104:13574CrossRefGoogle Scholar
  12. 12.
    Sivaraman P, Rath SK, Hande VR, Thakur AP, Patri M, Samui AB (2006) Synth Metals 156:1057CrossRefGoogle Scholar
  13. 13.
    Kim H, Popov BN (2002) J Power Sources 104:52CrossRefGoogle Scholar
  14. 14.
    Zheng JP, Jow TR (1995) J Electrochem Soc L6:142CrossRefGoogle Scholar
  15. 15.
    Sarangapani S, Tilak BV, Chen CP (1996) J Electrochem Soc 143:791CrossRefGoogle Scholar
  16. 16.
    McKeown DA, Hagans LP, Carette LPL, Russell AE, Swider KE, Rolison DR (1999) J Phys Chem B 103:4825CrossRefGoogle Scholar
  17. 17.
    Zheng JP, Cygan PJZ, Jow TR (1995) J Electrochem Soc 142:2699CrossRefGoogle Scholar
  18. 18.
    Ramani M, Haran BS, White RE, Popov BN (2000) J Electrochem Soc 148:374CrossRefGoogle Scholar
  19. 19.
    Ramani M, Haran BS, White RE, Popov BN, Arsov L (2000) J Power Sources 93:209CrossRefGoogle Scholar
  20. 20.
    Murgan AV, Vijayamohanan K (2007) In: Muller A, Cheetham AK, Rao CNR (eds) Nanomaterials chemistry, 1st edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Steele BCH, Heinzel A (2001) Nature 414:345CrossRefGoogle Scholar
  22. 22.
    Lufrano F, Staiti P (2004) Electrochim Acta 49:2683CrossRefGoogle Scholar
  23. 23.
    Osaka T, Liu X, Nojima M (1998) J Power Sources 74:22Google Scholar
  24. 24.
    Pedro GR, Chojak M, Karina CG, Asensio JA, Kulesza PJ, Nieves CP, Mónica LC (2003) Electrochem Commun 5:149CrossRefGoogle Scholar
  25. 25.
    Sivaraman P, Hande VR, Mishra VS, Rao CS, Samui AB (2003) J Power Sources 124:351CrossRefGoogle Scholar
  26. 26.
    Staiti P, Minutoli M, Lufrano F (2002) Electrochim Acta 47:2795CrossRefGoogle Scholar
  27. 27.
    Kongstein OE, Berning T, Borresen B, Seland F, Tunold R (2007) Energy 32:418CrossRefGoogle Scholar
  28. 28.
    Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) J Electrochem Soc 142:L121CrossRefGoogle Scholar
  29. 29.
    Iwakura Y, Uno K, Imai Y (1964) J Poly Sci 2:2605Google Scholar
  30. 30.
    Parthasarathy M, Gopinath CS, Vijayamohanan K (2006) Chem Mater 18:5244CrossRefGoogle Scholar
  31. 31.
    Lobato J, Canizares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) J Memb Sci 280:351CrossRefGoogle Scholar
  32. 32.
    Rolison DR, Hagans PL, Swider KE, Long JW (1998) Langmuir 15:774CrossRefGoogle Scholar
  33. 33.
    Lyons KES, Love CT, Rolison DR (2002) J Phys Chem B 106:12677CrossRefGoogle Scholar
  34. 34.
    Kim H, Popov BN (2001) J Power Source 104:52CrossRefGoogle Scholar
  35. 35.
    Staiti P, Lufrano F (2005) J Electrochem Soc 152:617CrossRefGoogle Scholar
  36. 36.
    Jang JH, Kato A, Machida K, Naoi K (2005) J Electrochem Soc 153:A321CrossRefGoogle Scholar
  37. 37.
    Dandekar MS, Arabale G, Vijayamohanan K (2004) J Power Sources 141:198CrossRefGoogle Scholar
  38. 38.
    Park KW, Ahn HJ, Sung YE (2002) J Power Sources 109:500CrossRefGoogle Scholar
  39. 39.
    Wang YG, Zhang XG (2003) Solid-State Ionics 166:61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dhanraj Rathod
    • 1
  • Meenu Vijay
    • 1
  • Nazrul Islam
    • 1
  • Ramaiyan Kannan
    • 1
  • Ulhas Kharul
    • 1
  • Sreekumar Kurungot
    • 1
  • Vijayamohanan Pillai
    • 1
    Email author
  1. 1.National Chemical LaboratoryPuneIndia

Personalised recommendations