Advertisement

Journal of Applied Electrochemistry

, Volume 39, Issue 7, pp 1059–1066 | Cite as

Effects of surface area on electrochemical performance of Li[Ni0.2Li0.2Mn0.6]O2 cathode material

  • Jea Hyeok Ryu
  • Bo Gun Park
  • Seuk Buom Kim
  • Yong Joon ParkEmail author
Original Paper

Abstract

The effect of surface area on the electrochemical properties and thermal stability of Li[Ni0.2Li0.2Mn0.6]O2 powders was characterized using a charge/discharge cycler and DSC (Differential Scanning Calorimeter). The surface area of the samples was successfully controlled from ~4.0 to ~11.7 m2 g−1 by changing the molar ratio of the nitrate/acetate sources and adding an organic solvent such as acetic acid or glucose. The discharge capacity and rate capability was almost linearly increased with increase in surface area of the sample powder. A sample with a large surface area of 9.6–11.7 m2 g−1 delivered a high discharge capacity of ~250 mAh g−1 at a 0.2 C rate and maintained 62–63% of its capacity at a 6 C rate versus a 0.2 C rate. According to the DSC analysis, heat generation by thermal reaction between the charged electrode and electrolyte was not critically dependent on the surface area. Instead, it was closely related to the type of organic solvent employed in the fabrication process of the powder.

Keywords

Chemical synthesis Electrochemical measurement Electrochemical properties Lithium battery Cathode Surface area 

Notes

Acknowledgement

This work was supported by the Korean Ministry of Information and Communication (Project No. 2006-S-006).

References

  1. 1.
    Zhang S, Qiu X, He Z, Weng D, Zhu W (2006) J Power Sources 153:350CrossRefGoogle Scholar
  2. 2.
    Amine K, Liu J, Belharouak I, Kang SH, Bloom I, Vissers D, Henriksen G (2005) J Power Sources 146:111CrossRefGoogle Scholar
  3. 3.
    Huang S, Wen Z, Yang X, Gu Z, Xu X (2005) J Power Sources 148:72CrossRefGoogle Scholar
  4. 4.
    Shin Y, Manthiram A (2003) Electrochem Solid State Lett 6:A34CrossRefGoogle Scholar
  5. 5.
    Wang X, Tanaike O, Kodama M, Hatori H (2007) J Power Sources 168:282CrossRefGoogle Scholar
  6. 6.
    Cushing BL, Goodenough JB (2002) Solid State Sci 4:1487CrossRefGoogle Scholar
  7. 7.
    Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) J Power Sources 163:180CrossRefGoogle Scholar
  8. 8.
    Kim J, Kim B, Lee J, Cho J, Park B (2005) J Power Sources 139:289CrossRefGoogle Scholar
  9. 9.
    Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kang KT, Kin HG (2004) Solid State Commun 129:311CrossRefGoogle Scholar
  10. 10.
    Son JT, Park KS, Kin HG, Chung HT (2004) J Power Sources 126:182CrossRefGoogle Scholar
  11. 11.
    Huang S, Wen Z, Yang X, Gu Z, Xu X (2005) J Power Sources 148:72CrossRefGoogle Scholar
  12. 12.
    Choi D, Kumta PN (2007) J Power Sources 163:1064CrossRefGoogle Scholar
  13. 13.
    Chen H, Qiu X, Zhu W, Hagenmuller P (2002) Electrochem Commun 4:488CrossRefGoogle Scholar
  14. 14.
    Kim DH, Kim J (2006) Electrochem Solid State Lett 9:A439CrossRefGoogle Scholar
  15. 15.
    Huang H, Yin SC, Nazar LF (2001) Electrochem Solid State Lett 4:A170CrossRefGoogle Scholar
  16. 16.
    Xia Y, Yoshio M, Noguchi H (2006) Electrochim Acta 52:240CrossRefGoogle Scholar
  17. 17.
    Meligrana G, Gervaldi C, Tuel A, Bodoardo S, Penazzi N (2006) J Power Sources 160:516CrossRefGoogle Scholar
  18. 18.
    Kim JS, Johnson CS, Vaughey JT, Hackney SA, Walz KA, Zeltner WA, Anderson MA, Thackeray MM (2004) J Electrochem Soc 151:A1755CrossRefGoogle Scholar
  19. 19.
    Leising RA, Palazzo MJ, Takeuchi ES, Takeuchi KJ (2001) J Electrochem Soc 148:A838CrossRefGoogle Scholar
  20. 20.
    Maleki H, Hallaj SA, Seiman Jr, Dinwiddie RB, Wang H (1999) J Electrochem Soc 146:947CrossRefGoogle Scholar
  21. 21.
    Hong YS, Park YJ, Ryu KS, Chang SH, Kim MG (2004) J Mater Chem 14:1424CrossRefGoogle Scholar
  22. 22.
    Lu Z, Dahn JR (2002) J Electrochem Soc 149:A1454CrossRefGoogle Scholar
  23. 23.
    Lu Z, Dahn JR (2002) J Electrochem Soc 149:A815CrossRefGoogle Scholar
  24. 24.
    Lu Z, Beaulieu LY, Donabberger RA, Thomas CL, Dahn JR (2002) J Electrochem Soc 149:A778CrossRefGoogle Scholar
  25. 25.
    Shaju KM, Subba Rao GV, Chowdari BVR (2002) Electrochim Acta 145:151Google Scholar
  26. 26.
    Lee DK, Park SH, Amine K, Bang HJ, Parakash J, Sun YK (2006) J Power Sources 162:1346CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jea Hyeok Ryu
    • 1
  • Bo Gun Park
    • 1
  • Seuk Buom Kim
    • 1
  • Yong Joon Park
    • 1
    • 2
    Email author
  1. 1.Department of Advanced Materials EngineeringKyonggi UniversitySuwonSouth Korea
  2. 2.Division of Advanced Industrial EngineeringKyonggi UniversitySuwonSouth Korea

Personalised recommendations