Advertisement

Journal of Applied Electrochemistry

, Volume 39, Issue 7, pp 1003–1009 | Cite as

Experimental analysis of platinum utilization in a DMFC cathode

  • Balaji KrishnamurthyEmail author
  • S. Deepalochani
Original Paper
  • 136 Downloads

Abstract

An experimental analysis of platinum utilization in a DMFC cathode is performed. The chief objective of this work is to elucidate the effect of Nafion and polytetrafluoroethylene (PTFE) on platinum utilization values on the cathode. Polarization curves indicate that the performance of a DMFC is sensitive to the Carbon/Nafion (C/N) and Nafion:PTFE (N/P) ratio in the catalyst layer. Our analysis shows that supported Pt/C catalysts have a much higher platinum utilization value than unsupported catalysts. Platinum utilization is a maximum at a C/N ratio of 2.5 and at a N/P ratio of six. Platinum utilization is more sensitive to the Nafion content in the catalyst layer than the Teflon content.

Keywords

Nafion Teflon Cyclic voltammetry DMFC Platinum utilization 

Notes

Acknowledgements

The author would like to thank the Director, ARCI, Hyderabad and DST, Government of India for financial assistance and ARCI for a fellowship to S. Deepalochani and support for this work. The author would also like to thank the Director, CFCT, Chennai, where the work was done. Further, the author would like to thank Dr. Ramya Krishnan for useful discussions and help with graphs.

References

  1. 1.
    Gancs L, Hult BN, Hakim N, Mukerjee S (2007) Electrochem Solid State Lett 10:B150CrossRefGoogle Scholar
  2. 2.
    Wei ZD, Ran HB, Liu XA, Liu Y, Sun CX, Chan SH, Shen PK (2006) Electrochim Acta 51:3091CrossRefGoogle Scholar
  3. 3.
    Farhar ZN (2004) J Power Sources 138:68CrossRefGoogle Scholar
  4. 4.
    Pozio A, Francesco M, Cemmi A, Cardenelli F, Giorgi L (2002) J Power Sources 105:13CrossRefGoogle Scholar
  5. 5.
    Raistrick ID, Van Zee JW, Kinoshita K, White RW, Burney HS (1986) Electrochem Soc Pennington 86:172Google Scholar
  6. 6.
    Raistrick ID US Patent No 4. 876:576Google Scholar
  7. 7.
    Ticianelli EA, Derouin CR, Redondo A, Srinivasan S (1988) J Electrochem Soc 135:2209CrossRefGoogle Scholar
  8. 8.
    McBreen J (1985) J Electrochem Soc 132:1112CrossRefGoogle Scholar
  9. 9.
    Tu WY, Liu WJ, Cha CS, Wu BL (1998) Electrochim Acta 43:3731CrossRefGoogle Scholar
  10. 10.
    Paulus UA, Verizidus Z, Schnyder B, Kuhnke M, Scherer GG, Wokaun A (2003) J Electroanal Chem 541:77CrossRefGoogle Scholar
  11. 11.
    Guangchun L, Pickup P (2003) J Electrochem Soc 150:C745CrossRefGoogle Scholar
  12. 12.
    Velayutham G, Kaushik J, Rajalakshmi N, Dhathatreyan KS (2007) Fuel Cells 7:314CrossRefGoogle Scholar
  13. 13.
    Tamizhmani G, Dodelet JP, Guay D (1996) J Electrochem Soc 143:18CrossRefGoogle Scholar
  14. 14.
    Ticianelli EA, Beery JG, Srinivasan S (1991) J Appl Electrochem 21:597CrossRefGoogle Scholar
  15. 15.
    Xiaoling C, Baolian Y, Ming H, Jingxin Z, Yaguang Q, Jingrong Y (1999) J Power Sources 79:75CrossRefGoogle Scholar
  16. 16.
    Schmidt TJ, Gasteiger H, Stab GD, Urban PM, Kolb DM, Behm RJ (1998) J Electrochem Soc 145:7Google Scholar
  17. 17.
    Teng Z, Wang G, Wu B, Gao Y (2007) J Power Sources 164:105CrossRefGoogle Scholar
  18. 18.
    Krishnamurthy B, Deepalochani S, Dhatha KS (2008) Fuel cells July 2008Google Scholar
  19. 19.
    Sehkyu P, Jong-Won L, Popov BN (2006) J Power Sources 163:357CrossRefGoogle Scholar
  20. 20.
    Weber AZ, Darling RM, Newman J (2004) J Electrochem Soc 151:A1715CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Center for Fuel CellsInternational Advanced Center for Powder Metallurgy and New MaterialsChennaiIndia

Personalised recommendations