Journal of Applied Electrochemistry

, Volume 39, Issue 7, pp 1033–1038 | Cite as

Morphology-dependent electrochemical supercapacitive characteristics of nanostructured manganese dioxide

  • Guo-Qing ZhangEmail author
  • Sheng-Tao Zhang
Original Paper


The dependence on morphology of the supercapacitive characteristics of manganese dioxide nanospheres (NSs) and nanorods (NRs) was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and a series of electrochemical techniques. Because the nanosized pores in MnO2 NSs resulted in high surface area, MnO2 electrodes made of NSs had higher specific capacitance (SC) than those made of NRs at current densities less than 2.0 A g−1. However, at current densities over 2.0 A g−1, the power density of MnO2 electrodes composed of NRs was better than that of NSs. The high surface area and nanosized pores in MnO2 NSs increase the number of redox active sites, which leads to high specific capacitance. On the other hand, the small pore size in MnO2 NSs restricts the rates of charge and discharge, thus limiting their power density.


Active site Electrochemical supercapacitors Manganese dioxide Nanostructure 



This work was supported by Yangtze Normal University Research Start-up Foundation and Science and Technology Research Project of Chongqing Education Board (KJ081304).


  1. 1.
    Winter M, Brodd RJ (2004) Chem Rev 104:4245CrossRefGoogle Scholar
  2. 2.
    Burke A (2000) J Power Sources 91:37CrossRefGoogle Scholar
  3. 3.
    Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New YorkGoogle Scholar
  4. 4.
    Sarangapani S, Tilak BV, Chen CP (1996) J Electrochem Soc 143:3791CrossRefGoogle Scholar
  5. 5.
    Reddy RN, Reddy RG (2004) J Power Sources 132:315CrossRefGoogle Scholar
  6. 6.
    Nakagava H, Shudo A, Miura K (2000) J Electrochem Soc 147:38CrossRefGoogle Scholar
  7. 7.
    Novak P, Müller K, Santanam KSV, Hass O (1997) Chem Rev 97:207CrossRefGoogle Scholar
  8. 8.
    Jeong YU, Manthiram A (2001) J Electrochem Soc 148:A189CrossRefGoogle Scholar
  9. 9.
    Cao L, Kong LB, Liang YY, Li HL (2004) Chem Commun 14:1646CrossRefGoogle Scholar
  10. 10.
    Zhou YK, He BL, Zhou WJ, Li HL (2004) J Electrochem Soc 151:A1052CrossRefGoogle Scholar
  11. 11.
    Celine L, Cristelle P, John C, Pierre-Louis T, Yury G, Patrice S (2008) J Am Chem Soc 130:2730CrossRefGoogle Scholar
  12. 12.
    Ardizzone S, Fregonara G, Trasatti S (1990) Electrochimica Acta 35:263CrossRefGoogle Scholar
  13. 13.
    Kim H, Popov BN (2002) J Power Sources 104:52CrossRefGoogle Scholar
  14. 14.
    Chang KH, Hu CC (2004) Electrochem Solid-State Lett 7:A466CrossRefGoogle Scholar
  15. 15.
    Soudan P, Gaudet J, Guay D, Bélanger D, Schulz R (2002) Chem Mater 14:1210CrossRefGoogle Scholar
  16. 16.
    Lee HY, Goodenough JB (1999) J Solid State Chem 144:220CrossRefGoogle Scholar
  17. 17.
    Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444CrossRefGoogle Scholar
  18. 18.
    Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184CrossRefGoogle Scholar
  19. 19.
    Zhao DD, Bao SJ, Zhou WJ, Li HL (2007) Electrochem Commun 9:869CrossRefGoogle Scholar
  20. 20.
    Yuan JK, Laubernds K, Zhang QH, Suib LS (2003) J Am Chem Soc 125:4966CrossRefGoogle Scholar
  21. 21.
    Srinivasan V, Weidner JW (2000) J Electrochem Soc 147:880CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Department of Chemistry and Environment ScienceYangtze Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations