Skip to main content
Log in

Current status of proton-conducting solid oxide fuel cells development

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Solid oxide fuel cells (SOFC) are promising devices for high efficiency cogeneration. The most widely used and studied ones have an anion conducting electrolyte that requires high operating temperatures to limit ohmic losses across this electrolyte; temperatures typically range between 800 and 1,000 °C. This temperature is associated with undesirable phenomena such as material interaction and insulating phase formation that result in unsatisfactory durability and high cost for market entry. Proton conducting solid oxide fuel cells (PCFC) constitutes a promising alternative since they allow a significant decrease in operating temperature. The Ba(Zr,Ce,Ln)O3−δ perovskite family exhibits ionic conductivities reaching 10−2 to 10−1 S cm−1 at temperatures as low as 600–700 °C, these values being obtained with anion conducting SOFC between 700 and 1,000 °C. On the basis of a review of work on half cells and complete cells, this paper addresses the main parameters that control and limit PCFC behaviour. This analysis aims at proposing recommendations for designing and testing proton conducting fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.  7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eguchi K, Singhal SC, Yokokawa H, Mizusaki J (2007) Proceedings of SOFC X, Electrochemical Society, ECS transaction, 7:1

  2. European fuel cell and hydrogen projects 2002–2006, (2007) EUR 22398, IBSN: 92-79-02692-5 http://ec.europa.eu/research/energy/

  3. Solid state energy conversion alliance (SECA) program. http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/

  4. Nopponen M (2006) J Fuel Cell Sci Technol 3:438

    Article  Google Scholar 

  5. Private communication Nabielek H, Steinberger (2006) REAL SOFC Summer school 2006. http://www.real-sofc.org/

  6. Menzler NH, de Hart LGJB, Sebold D (2007) ECS Transact 7:245

    Article  Google Scholar 

  7. Iwahara H (1996) Solid State Ionics 9:86

    Google Scholar 

  8. Kreuer KD (2003) Annu Rev Mater Res 33:333

    Google Scholar 

  9. Iwahara H (1995) Solid State Ionics 77:289

    Article  CAS  Google Scholar 

  10. Dah PI, Haugsru R, Lein HL, Grande T, Norby T, Einarsrud MA (2007) J Eur Ceram Soc 27:4461

    Article  Google Scholar 

  11. Balachandran U, Lee TH, Dorris SE (2007) ECS Transact 7:987

    Article  Google Scholar 

  12. Ranran P, Yan W, Lizhai Y, Zongqiang M (2006) Solid State Ionics 177:389

    Article  Google Scholar 

  13. Kek D, Bonanos N, Mogensen M, Pejovnik S (2000) Solid State Ionics 131:249

    Article  CAS  Google Scholar 

  14. Akimune Y, Matsuo K, Higashiyama H, Honda K, Yamanaka M, Uchiyama M, Hatano M (2007) Solid State Ionics 178:575

    Article  CAS  Google Scholar 

  15. Mather GC, Figueiredo FM, Fagg DP, Norby T, Jurado JR, Frade JR (2003) Solid State Ionics 158:333

    Article  CAS  Google Scholar 

  16. Tolchard JR, Grande T (2007) Solid State Ionics 178:593

    Article  CAS  Google Scholar 

  17. Tolchard JR, Grande T (2007) Solid State Ionics 180:2808

    CAS  Google Scholar 

  18. Iwahara H, Asakura Y, Katahira K, Tanaka M (2004) Solid State Ionics 168:299

    Article  CAS  Google Scholar 

  19. Coors WG (2004) J ElectroChem Soc 151:7 A994

    Article  Google Scholar 

  20. Description of the GEMINI code: Gibbs Energy Minimizer. http://thermodata.online.fr

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Lefebvre-Joud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefebvre-Joud, F., Gauthier, G. & Mougin, J. Current status of proton-conducting solid oxide fuel cells development. J Appl Electrochem 39, 535–543 (2009). https://doi.org/10.1007/s10800-008-9744-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9744-7

Keywords

Navigation