Journal of Applied Electrochemistry

, Volume 39, Issue 6, pp 913–920 | Cite as

Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr

  • Li-Ming Peng
  • Jian-Wei ChangEmail author
  • Xing-Wu Guo
  • Andrej Atrens
  • Wen-Jiang Ding
  • Ying-Hong Peng
Original Paper


The corrosion of Mg alloy Mg-10Gd-3Y-0.4Zr, in the as-cast (F), solution treated (T4) and aged (T6) conditions, was investigated in 5% NaCl solution by immersion tests and potentiodynamic polarization measurements. The as-cast (F) condition had the highest corrosion rate due to micro-galvanic corrosion of the α-Mg matrix by the eutectic. Solution treatment led to the lowest corrosion rate, attributed to the absence of any second phase and a relatively compact protective surface film. Ageing at 250 °C increased the corrosion rate with increasing ageing time to 193 h attributed to increasing micro-galvanic corrosion acceleration of the Mg matrix by increasing amounts of the precipitates. Ageing for longer periods caused a decrease in the corrosion rate attributed to some barrier effect by a nearly continuous second-phase network. Electrochemical measurements did not give accurate evaluation of the corrosion rate in agreement with the immersion tests.


Corrosion Heat treatment Mg-Gd-Y-Zr alloy Microstructure Potentiodynamic polarization curve 



This work was supported by Postdoctoral foundation of China (No. 20080430657), Program of Shanghai Subject Chief Scientist of China (No. 08XD14020) and National Basic Research Program of China (No. 2007CB613701). The authors would like to thank Dr. Yi-jian Lai of the Center of Analysis and Measurement of Shanghai Jiao Tong University for his help in observation of the corrosion products with Field Emission Scanning Electron Microscope (FE-SEM).


  1. 1.
    Rokhlin LL (2003) Magnesium alloys containing rare earth metals. Taylor and Francis, LondonGoogle Scholar
  2. 2.
    Lorimer GW (1986) Proceedings of magnesium technology. Institute of Metals, LondonGoogle Scholar
  3. 3.
    Smola B, Stuliikovai I, Von Buch F, Mordike BL (2002) Mater Sci Eng A 324:113CrossRefGoogle Scholar
  4. 4.
    Vostryi P, Smola B, Stuliikovai I, Von Buch F, Mordike BL (1999) Phys Stat Sol A 175:491CrossRefGoogle Scholar
  5. 5.
    He SM, Zeng XQ, Peng LM, Gao X, Nie JF, Ding WJ (2006) J Alloys Comp 421:309CrossRefGoogle Scholar
  6. 6.
    Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Scr Mater 48:1023CrossRefGoogle Scholar
  7. 7.
    Nie JF, Muddle BC (2000) Acta Mater 48:1691CrossRefGoogle Scholar
  8. 8.
    Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A (2003) Acta Mater 51:5335CrossRefGoogle Scholar
  9. 9.
    Song G, Atrens A (1999) Adv Eng Mater 1:11CrossRefGoogle Scholar
  10. 10.
    Song G, Atrens A (2003) Adv Eng Mater 5:837CrossRefGoogle Scholar
  11. 11.
    Song G, Atrens A (2007) Adv Eng Mater 9:177CrossRefGoogle Scholar
  12. 12.
    Song G, Atrens A, Dargusch M (1999) Corros Sci 41:249CrossRefGoogle Scholar
  13. 13.
    Zhao MC, Liu M, Song G, Atrens A (2008) Corros Sci 50:1939CrossRefGoogle Scholar
  14. 14.
    Zhao MC, Liu M, Song G, Atrens A (2008) Adv Eng Mater 10:93CrossRefGoogle Scholar
  15. 15.
    Winzer N, Atrens A, Song G, Ghali E, Dietzel W, Kainer KU, Hort N, Blawert C (2005) Adv Eng Mater 7:659CrossRefGoogle Scholar
  16. 16.
    Kannan MB, Dietzel W, Blawert C, Atrens A, Lyon P (2008) Mater Sci Eng A 480:529CrossRefGoogle Scholar
  17. 17.
    Aung NN, Zhou W (2002) J Appl Electrochem 32:1397CrossRefGoogle Scholar
  18. 18.
    Beldijoudi T, Fiaud C, Robbiola L (1993) Corrosion 8:738CrossRefGoogle Scholar
  19. 19.
    Hsiao HY, Tsai WT (2005) J Mater Res 20:2763CrossRefGoogle Scholar
  20. 20.
    Song G, Bowles AL, John DH (2004) Mater Sci Eng A 366:74CrossRefGoogle Scholar
  21. 21.
    Ambat R, Aung NN, Zhou W (2000) Corros Sci 42:1433CrossRefGoogle Scholar
  22. 22.
    Zhao MC, Liu M, Song G, Atrens A (2008) Corros Sci 50:3168CrossRefGoogle Scholar
  23. 23.
    Zhao MC, Liu M, Song G, Atrens A (2008) Adv Eng Mater 10:104CrossRefGoogle Scholar
  24. 24.
    ASM International (1987) Metals handbook. ASM International, Materials ParkGoogle Scholar
  25. 25.
    Uhlig HH, Revie RW (1985) Corrosion and corrosion control. Wiley, New YorkGoogle Scholar
  26. 26.
    Song G, Atrens A, John D (2001) Magnesium technology. Hryn, New OrleansGoogle Scholar
  27. 27.
    Chang JW, Guo XW, Fu PH, Peng LM, Ding WJ (2007) Electrochim Acta 52:3160CrossRefGoogle Scholar
  28. 28.
    Guo XW, Chang JW, He SM, Ding WJ, Wang X (2007) Electrochim Acta 52:2570CrossRefGoogle Scholar
  29. 29.
    Scharf C, Ditze A, Shkurankov A, Morales E, Blawert C, Dietzel W, Kainer KU (2005) Adv Eng Mater 7:1134CrossRefGoogle Scholar
  30. 30.
    Jia JX, Atrens A, Song G, Muster T (2005) Mater Corros 56:468CrossRefGoogle Scholar
  31. 31.
    Mansfeld F (1971) Corrosion 27:436Google Scholar
  32. 32.
    Krishnamurthy S, Khobaib M, Robertson E, Froes FH (1988) Mater Sci Eng 99:507CrossRefGoogle Scholar
  33. 33.
    Kiryuu M, Okumura H, Kamado S, Kojima Y, Ninomiya R, Nakatsugawa I (1996) J Jpn Inst Light Met 46:39CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Li-Ming Peng
    • 1
  • Jian-Wei Chang
    • 1
    • 2
    Email author
  • Xing-Wu Guo
    • 1
  • Andrej Atrens
    • 3
  • Wen-Jiang Ding
    • 1
  • Ying-Hong Peng
    • 2
  1. 1.National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Division of Materials, School of EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations