Advertisement

Journal of Applied Electrochemistry

, Volume 39, Issue 6, pp 879–885 | Cite as

Electroless plating of Ni–P coatings on carbon steel in a stirred bed of glass balls

  • Zhaoxia Ping
  • Yedong He
  • Changdong Gu
  • Tong-Yi ZhangEmail author
Original Paper

Abstract

The electroless plating of Ni–P coatings was carried out in a stirred plating solution containing a bed of glass balls with a fixed stirring rate of 1,800 rpm. The diameters of the glass balls were 2 and 3 mm and the total weight of the balls was ~200 g; the weight ratio of the 2 mm to the 3 mm balls was 3:2. The as-deposited Ni–P coating was composed of fine polycrystalline Ni grains and had a smooth appearance. The hardness and corrosion resistance of the novel coatings were considerably improved compared with the conventional electroless (CE)-plated amorphous Ni–P coatings. After heat treatment at 400 °C for 1 h, cracks occurred in the CE-plated Ni–P coating, while no cracks appeared in the mechanically assisted electroless (MAE)-plated Ni–P coating. These improved properties of the MAE-plated Ni–P coatings demonstrate the advantages of this novel technique, which may find wide application in industry.

Keywords

Mechanically assisted electroless plating Ni–P coating Crystallization Corrosion resistance Microhardness 

Notes

Acknowledgments

The work was financially supported by the Chinese National Nature Science Foundation (Grant.50671006). Zhaoxia Ping was partially supported by the Fok Ying Tung Graduate School, HKUST.

References

  1. 1.
    Baudrand DW (1994) ASM handbook, vol 5. ASM International, Materials Park, p 290Google Scholar
  2. 2.
    Zhang YZ, Yao M (1999) Trans Inst Met Finish 77(2):78Google Scholar
  3. 3.
    Tummala RR, Rymaszeski EJ, Klopfenstein AG (1997) Microelectronics packaging handbook—part 2, chap 8. Chapman and Hall, LondonGoogle Scholar
  4. 4.
    Tyagi SVS, Barthwal SK, Tandon VK, Ray S (1989) Thin Solid Films 169(2):229CrossRefGoogle Scholar
  5. 5.
    Kumar PS, Nair PK (1996) J Mater Process Technol 56:511CrossRefGoogle Scholar
  6. 6.
    Martyak NM, Drake K (2000) J Alloy Compd 312:30CrossRefGoogle Scholar
  7. 7.
    Ma EM, Luo SF, Li PX (1988) Thin Solid Films 166:273CrossRefGoogle Scholar
  8. 8.
    Agarwala RC, Ray S (1989) Z Metallkd 80(8):556Google Scholar
  9. 9.
    Hur KH, Jeong JH, Lee DN (1991) J Mater Sci 26(8):2037CrossRefGoogle Scholar
  10. 10.
    Parker K (1981) Plat Surf Finish 68(12):71Google Scholar
  11. 11.
    Goldenstein AW, Rostoker W, Schossberger F (1957) J Electrochem Soc 2:104CrossRefGoogle Scholar
  12. 12.
    Tyagi SVS, Barthwal SK, Tandon VK, Ray S (1989) Thin Solid Films 169:229CrossRefGoogle Scholar
  13. 13.
    Narayan R, Mungole MN (1985) Met Finish 83:55Google Scholar
  14. 14.
    Staia MH, Cadtillo EJ, Puchi ES, Hintermann HE (1996) Surf Coat Technol 86–87:598CrossRefGoogle Scholar
  15. 15.
    Song JY, Yu J (2002) Thin Solid Films 415:167CrossRefGoogle Scholar
  16. 16.
    Razavi R Sh, Salehi M, Monirvaghefi M, Gordani GR (2008) J Mater Process Technol 195:154CrossRefGoogle Scholar
  17. 17.
    Eisner S (1971) J Plat (USA) 58:993Google Scholar
  18. 18.
    Wisdom NE, Eisner S (1971) J Plat (USA) 58:1099Google Scholar
  19. 19.
    Eisner S, Wisdom NE (1971) J Plat (USA) 58:1183Google Scholar
  20. 20.
    Eisner S (1972) US Patent 3,753,889Google Scholar
  21. 21.
    Eisner S, Trans J (1973) Met Finish 51:13Google Scholar
  22. 22.
    He YD, Zhan ZL, Wang DR Chinese patent ZL200410009189.7Google Scholar
  23. 23.
    Zhan ZL, He YD, Wang DR, Gao W (2006) J Intermet 14:75CrossRefGoogle Scholar
  24. 24.
    Ning Z, He Y, Gao W (2008) Surf Coat Technol 202:2139CrossRefGoogle Scholar
  25. 25.
    He Y, Fu H, Li X, Gao W (2008) Scr Mater 58:504CrossRefGoogle Scholar
  26. 26.
    Germain S, Goodridge F (1976) Electrochim Acta 21:545CrossRefGoogle Scholar
  27. 27.
    Fleischm M, Oldfield JW (1971) J Electroanal Chem 29:211CrossRefGoogle Scholar
  28. 28.
    Fleischm M, Oldfield JW (1971) J Electroanal Chem 29:231CrossRefGoogle Scholar
  29. 29.
    Fleischm M, Oldfield JW, Porter DF (1971) J Electroanal Chem 29:241CrossRefGoogle Scholar
  30. 30.
    Keong KG, Sha W, Malinov S (2003) Surf Coat Technol 168:263CrossRefGoogle Scholar
  31. 31.
    Keong KG, Sha W, Malinov S (2002) J Alloy Compd 334:192CrossRefGoogle Scholar
  32. 32.
    Birks LS, Friedman H (1946) J Appl Phys 17:687CrossRefGoogle Scholar
  33. 33.
    Guo Z, Keong KG, Sha W (2003) J Alloy Compd 358:112CrossRefGoogle Scholar
  34. 34.
    Keong KG, Sha W, Malinov S (2002) J Mater Sci 37:4445CrossRefGoogle Scholar
  35. 35.
    Ping Z, He Y, Gu C, Zhang T (2008) Surf Coat Technol 202:6023CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Zhaoxia Ping
    • 1
    • 2
  • Yedong He
    • 1
  • Changdong Gu
    • 3
  • Tong-Yi Zhang
    • 2
    • 3
    Email author
  1. 1.Beijing Key Laboratory for Corrosion, Erosion and Surface TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.The Hong Kong–Beijing UST Joint Research CenterHKUST, Fok Ying Tung Graduate SchoolGuangzhouChina
  3. 3.Department of Mechanical EngineeringHong Kong University of Science and TechnologyHong KongChina

Personalised recommendations