Advertisement

Journal of Applied Electrochemistry

, Volume 39, Issue 6, pp 873–877 | Cite as

CO2 corrosion of carbon steel in the presence of acetic acid at higher temperatures

  • Peter C. OkaforEmail author
  • Bruce Brown
  • Srdjan Nesic
Original Paper

Abstract

The corrosion behaviour of X 65 carbon steel in the presence of acetic acid in N2- and CO2-saturated systems has been investigated using electrochemical techniques. The presence of acetic acid does not influence the anodic reaction but strongly accelerates the cathodic reaction. The cathodic reaction and consequently the corrosion rate of mild steel in the CO2-saturated system increase with increase in acetic acid concentration and temperature. From the values of the apparent activation energies, the corrosion reaction in the absence of acetic acid was found to be under mixed interfacial reaction/diffusion control while interfacial reaction control dominates in the presence of acetic acid. The reduction of adsorbed undissociated acetic acid on the metal surface is proposed as the key species primarily responsible for accelerated corrosion rate at all temperatures.

Keywords

CO2 corrosion Acetic acid Electrochemical techniques Mild steel 

Notes

Acknowledgements

P. C. Okafor acknowledges the United States Department of State and the Institute of International Education (IIE) for the Fulbright J. S. Development Fellowship.

References

  1. 1.
    de Bruyn HI (1998) In: Proceedings of CORROSION/1998, Paper No 576. NACE International, HoustonGoogle Scholar
  2. 2.
    Meyers PA, Ishiwatari R (1993) In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New YorkGoogle Scholar
  3. 3.
    Slavcheva E, Shone B, Turnball A (1999) Br Corros J 34:125CrossRefGoogle Scholar
  4. 4.
    Menaul PL (1944) Oil Gas J 43:80Google Scholar
  5. 5.
    Shock DA, Sudbury JD (1951) World Oil 133:180Google Scholar
  6. 6.
    Obukhova ZP (1973) Candidates Dissertation VN 11 GAZ, Moscow, 1974, Gazouaya PromyshlennostGoogle Scholar
  7. 7.
    George KS, Nesic S (2007) Corrosion 63:178Google Scholar
  8. 8.
    Gunaltun YM, Larrey D (2000) In: Proceedings of CORROSION/2000 Paper No 00071. NACE International, HoustonGoogle Scholar
  9. 9.
    Joosten MW, Kolts J, Hembree JW (2002) In: Proceedings of CORROSION/2002, Paper No 02294. NACE International, HoustonGoogle Scholar
  10. 10.
    Okafor PC, Nesic S (2007) Chem Eng Commun 194:141CrossRefGoogle Scholar
  11. 11.
    Hedges B, McVeigh L (1999) In: Proceedings of CORROSION/1999, Paper No 21. NACE International, HoustonGoogle Scholar
  12. 12.
    Crolet J-T, Thevenot N, Dugstad A (1999) In: Proceedings of CORROSION/1999, Paper No 24. NACE International, HoustonGoogle Scholar
  13. 13.
    Garsany Y, Pletcher D, Hedges B (2002) J Electroanal Chem 538–539:297Google Scholar
  14. 14.
    Veloz MA, Gonzalez I (2002) Electrochim Acta 48:135CrossRefGoogle Scholar
  15. 15.
    Garsany Y, Pletcher D (2003) In: Proceedings of CORROSION/2003, Paper No 03324. NACE International, HoustonGoogle Scholar
  16. 16.
    Garsany Y, Pletcher D, Sidorin D, Hedges B (2005) Corrosion 60:1155Google Scholar
  17. 17.
    Guo XP, Chen ZY, Liu D, Bando K, Tomoe Y. (2005) In: Proceedings of CORROSION/2005, Paper No 05295. NACE International, HoustonGoogle Scholar
  18. 18.
    Liu D, Fu CY, Chen ZY, Guo XP (2007) Corros Sci Technol 6:227Google Scholar
  19. 19.
    Nesic S, Postlethwaite J, Olsen S (1996) Corrosion 52:280Google Scholar
  20. 20.
    Nesic S (2007) Corros Sci 49:4308CrossRefGoogle Scholar
  21. 21.
    Cao C (1996) Corros Sci 38:2073CrossRefGoogle Scholar
  22. 22.
    West JM (1980) Basic corrosion and oxidation. Ellis Horwood, LondonGoogle Scholar
  23. 23.
    Potter EC, GMW Mann (1961) In: 1st International congress on metallic corrosion, Butterworths, LondonGoogle Scholar
  24. 24.
    Robertson J, Forest JE (1991) Corros Sci 32:521CrossRefGoogle Scholar
  25. 25.
    Gray LGS, Anderson BG, Danysh MJ, Tremaine PR (1990) In: Proceedings of CORROSION/1990, Paper No 40. NACE International, HoustonGoogle Scholar
  26. 26.
    Heuer JK, Stubbins JF (1999) Corros Sci 41:1231CrossRefGoogle Scholar
  27. 27.
    Nordsveen M, Nesic S, Nyborg R, Strangeland A (2003) Corrosion 59:443CrossRefGoogle Scholar
  28. 28.
    Weast RC (ed) (1972) Handbook of chemistry and physics. CRC Press, ClevelandGoogle Scholar
  29. 29.
    Asada K (1982) In: Inoue S, Yamazaki N (eds) Organic and biorganic chemistry of carbon dioxide. Halsted Press, TokyoGoogle Scholar
  30. 30.
    Keene FR (1993) In: Sullivan PP, Krist K, Guard HE (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Vetter KJ (1967) Electrochemical kinetics: theoretical and experimental aspects. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Pure & Applied ChemistryUniversity of CalabarCalabarNigeria
  2. 2.Institute for Corrosion and Multiphase Flow TechnologyOhio UniversityAthensUSA

Personalised recommendations