Skip to main content
Log in

Effect of nano-layered ceramic coatings on the electrical conductivity of oxide scale grown on ferritic steels

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrical conductivity of a coated and uncoated model Fe-30Cr ferritic steel was studied between 973 and 1,073 K. The ASR values decreased with temperature increase. The application of a nano-structured ceramic coating made of yttria on the surface of the steel induced a decrease of the ASR values, especially at 1,073 K, which is the operating temperature for Intermediate Temperature Solid-Oxide Fuel Cells. The ASR value of the yttria-coated alloy is 9.3 mΩ cm2 compared to 37.8 mΩ cm2 determined on the uncoated steel after 100 h at 1,073 K in air. The estimated value of the ASR parameter after 10,000 h is encouraging, as it is limited to 17 mΩ cm2. The oxidised surfaces were characterised by scanning electron microscopy and X-ray diffraction. The results were compared with the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petitjean M, Caboche G, Siebert E, Dessemond L, Dufour LC (2005) J Eur Ceram Soc 25:2651

    Article  CAS  Google Scholar 

  2. Fergus JW (2006) Solid State Ionics 177:1529

    Article  CAS  Google Scholar 

  3. Zhu WZ, Deevi SC (2003) Mater Sci Eng A 348:227

    Article  Google Scholar 

  4. Yang Z, Weil KS, Paxton DM, Stevenson JW (2003) J Electrochem Soc 150:A1188

    Article  CAS  Google Scholar 

  5. Fergus JW (2004) Solid State Ionics 171:1

    Article  CAS  Google Scholar 

  6. Quadakkers WJ, Piron-Abellan J, Shemet V, Singheiser L (2003) Mater High Temp 20:115

    Article  CAS  Google Scholar 

  7. Fergus JW (2005) Mater Sci Eng A 397:271

    Article  Google Scholar 

  8. Kim JH, Song RH, Hyun SH (2004) Solid State Ionics 174:185

    Article  CAS  Google Scholar 

  9. Oishi N, Yamasaki Y (1999) Electrochem Soc Proc 99–19:759

    Google Scholar 

  10. Yang Z, Walker MS, Singh P, Stevenson JW, Norby T (2004) J Electrochem Soc 151:669

    Article  Google Scholar 

  11. Barbucci A, Piccardo P, Carpanese MP, Viviani M (2006) In: Stoynov Z, Vladikova D, Drinov M (eds) Portable and emergency energy sources. Prof. Marin Drinov Academic Publishing House, Sofia

  12. Huczkowski P, Christiansen N, Shemet V, Piron-Abellan J, Singheiser L, Quadakkers WJ (2004) Mater Corros 55:825

    Article  CAS  Google Scholar 

  13. Holcomb GR, Alman DE (2006) Scr Mater 54:1821

    Article  CAS  Google Scholar 

  14. Geng SJ, Zhu JH, Lu ZG (2006) Scr Mater 55:239

    Article  CAS  Google Scholar 

  15. Sakai N, Horita T, Xiong YP, Yamaji K, Kishimoto H, Brito ME, Yokokawa H, Maruyama T (2005) Solid State Ionics 176:681

    Article  CAS  Google Scholar 

  16. Hammer JE, Laney SJ, Jackson RW, Coyne K, Pettit FS, Meier GH (2007) Oxid Met 67:1

    Article  CAS  Google Scholar 

  17. Quadakkers WJ, Greiner H, Hänsel M, Pattanaik A, Khanna AS, Mallener W (1996) Solid State Ionics 91:55

    Article  CAS  Google Scholar 

  18. Brylewski T, Nanko M, Maruyama T, Przybylski K (2001) Solid State Ionics 143:131

    Article  CAS  Google Scholar 

  19. Zhu JH, Zhang Y, Basu A, Lu ZG, Paranthaman M (2004) Surf Coat Technol 177–178:65

    Article  Google Scholar 

  20. Qu W, Li J, Ivey DC (2004) J Power Sources 138:162

    Article  CAS  Google Scholar 

  21. Przybylski K (2006) In: Stoynov Z, Vladikova D, Drinov M (eds) Portable and emergency energy sources. Prof. Marin Drinov Academic Publishing House, Sofia

  22. Chevalier S, Larpin JP (2002) Acta Mater 50:3105

    Article  CAS  Google Scholar 

  23. Bonnet G, Aguilar G, Colson JC, Larpin JP (1993) Corros Sci 35:893

    Article  CAS  Google Scholar 

  24. Chevalier S, Dufour P, Bonnet G, Colson JC (1998) Oxid Met 50:27

    Article  CAS  Google Scholar 

  25. Bonnet G, Lachkar M, Colson JC, Larpin JP (1995) Thin Solid Films 261:31

    Article  CAS  Google Scholar 

  26. Chevalier S, Bonnet G, Larpin JP (2000) Appl Surf Sci 167:125

    Article  CAS  Google Scholar 

  27. Huang K, Hou PY, Goodenough JB (2000) Solid State Ionics 129:237

    Article  CAS  Google Scholar 

  28. Cabouro G, Caboche G, Chevalier S, Piccardo P (2006) J Power Sources 156:39

    Article  CAS  Google Scholar 

  29. Chevalier S (2007) Traitement de surface et nouveaux matériaux: quelles solutions pour lutter contre la dégradation des matériaux métalliques à haute température? Les Editions Universitaires de Dijon, Dijon

    Google Scholar 

  30. Chen X, Hou PY, Jacobson CP, Visco SJ, De Jonghe LC (2005) Solid State Ionics 176:425

    Article  CAS  Google Scholar 

  31. Zhu WZ, Deevi SC (2003) Mater Res Bull 38:957

    Article  CAS  Google Scholar 

  32. Park JH, Natesan K (1990) Oxid Met 33:31

    Article  CAS  Google Scholar 

  33. Liu H, Stack MM, Lyon SB (1998) Solid State Ionics 109:247

    Article  CAS  Google Scholar 

  34. Hou PY, Huang K, Bakker WT (1999) Electrochem Soc Proc 99–13:737

    Google Scholar 

Download references

Acknowledgment

The authors thank Dr G. Cabouro for the preparation of MOCVD coatings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chevalier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevalier, S., Caboche, G., Przybylski, K. et al. Effect of nano-layered ceramic coatings on the electrical conductivity of oxide scale grown on ferritic steels. J Appl Electrochem 39, 529–534 (2009). https://doi.org/10.1007/s10800-008-9726-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9726-9

Keywords

Navigation