Advertisement

Journal of Applied Electrochemistry

, Volume 39, Issue 6, pp 751–759 | Cite as

Effect of nickel sulphate and magnesium sulphate on pH of sulphuric acid solutions at elevated temperatures

  • Z. Jankovic
  • V. G. PapangelakisEmail author
  • S. N. Lvov
Original Paper

Abstract

A flow-through potentiometric technique utilizing an yttria-stabilized zirconia (YSZ) pH sensor has been employed to elucidate the effects of NiSO4 and MgSO4 on pH of H2SO4 solutions at temperatures of 200 °C and 250 °C. Solution pH was found to increase with increasing NiSO4 and MgSO4 concentrations at both temperatures. This trend is attributed to the dissociation of NiSO4 and MgSO4 where the SO4 2−(aq) released reacts with H+(aq) to form HSO4 (aq). The conversion of measured potentials into pH values was based on the mixed-solvent electrolyte (MSE) model, which is a speciation model of the new OLI Systems® software. Both the Henderson equation and exact definition of the diffusion potential were employed in treating the obtained experimental data. Experimental pH values calculated using the diffusion potentials evaluated by either approach are similar, suggesting that the Henderson equation can be effectively used. In addition, LiCl was found to be a suitable alternative to NaCl as the reference electrode solution.

Keywords

High-temperature pH measurement Yttria-stabilized zirconia sensor 

Notes

Acknowledgments

We would like to acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). We are grateful to Dr. Haixia Liu for providing speciation calculations. We would also like to thank Dr. David Wesolowski, Prof. William Seyfried, Jr., and Prof. Kwadwo Osseo-Asare for providing reviews of an earlier version of this paper.

References

  1. 1.
    Baghalha M, Papangelakis VG (1998) Metall Mater Trans 29B:945Google Scholar
  2. 2.
    Krause E, Singhal A, Blakey BC et al (1997) In: Cooper WC, Mihaylov I (eds) Nickel–Cobalt 97 international symposium vol I. The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, pp 441–458Google Scholar
  3. 3.
    Rubisov DH, Papangelakis VG (2000) Hydrometallurgy 58:13CrossRefGoogle Scholar
  4. 4.
    Seneviratne DS, Papangelakis VG, Zhou XY, Lvov SN (2003) Hydrometallurgy 68:131CrossRefGoogle Scholar
  5. 5.
    Baghalha M, Papangelakis VG (1998) Metall Mater Trans 29B:1021Google Scholar
  6. 6.
    Ridley MK, Wesolowski DJ, Palmer DA, Kettler RM (1999) Geochim Cosmochim Acta 63:459CrossRefGoogle Scholar
  7. 7.
    Tagirov B, Schott J (2001) Geochim Cosmochim Acta 65:3965CrossRefGoogle Scholar
  8. 8.
    Lvov SN, Gao H, Kouznetsov D et al (1998) Fluid Phase Equilibria 150–151:515CrossRefGoogle Scholar
  9. 9.
    Lvov SN, Zhou XY, Ulyanov SM et al (2004) In: Collins MJ, Papangelakis VG (eds) Pressure hydrometallurgy 2004. The Canadian Institute of Mining, Metallurgy and Petroleum, Banff, Canada, pp 561–576Google Scholar
  10. 10.
    MacInnes DA (1961) The principles of electrochemistry. Dover Publications, New York, pp 220–232Google Scholar
  11. 11.
    Lvov SN, Palmer DA (2004) In: Palmer DA, Fernandez-Prini R, Harvey AH (eds) Aqueous systems at elevated temperatures and pressures: Physical chemistry in water, steam and hydrothermal solutions. Elsevier Academic Press, Amsterdam, pp 377–408Google Scholar
  12. 12.
    Lvov SN, Zhou XY, Ulmer GC et al (2003) Chem Geol 198:141CrossRefGoogle Scholar
  13. 13.
    Lvov SN (2007) In: Bard AJ, Stratmann M, Macdonald DD, Schmuki P (eds) Encyclopedia of electrochemistry, vol 5. Wiley-VCH, Weinheim, pp 723–747Google Scholar
  14. 14.
    Lvov SN, Gao H, Macdonald DD (1998) J Electroanal Chem 443:186CrossRefGoogle Scholar
  15. 15.
    Macdonald DD, Hettiarachchi S, Lenhart SJ (1988) J Solution Chem 17:719CrossRefGoogle Scholar
  16. 16.
    Lvov SN, Zhou XY, Macdonald DD (1999) J Electroanal Chem 463:146CrossRefGoogle Scholar
  17. 17.
    Harper HW (1985) J Phys Chem 89:1659CrossRefGoogle Scholar
  18. 18.
    Liu H, Papangelakis VG (2005) Hydrometallurgy 79:48CrossRefGoogle Scholar
  19. 19.
    Huang M, Papangelakis VG (2006) Ind Eng Chem Res 45:4757CrossRefGoogle Scholar
  20. 20.
    Heck A (1996) Introduction to maple, 2nd edn. Springer-Verlag, New York, pp 241–242Google Scholar
  21. 21.
    Dutrizac JE, Jambor JL (1987) Hydrometallurgy 17:251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada
  2. 2.Department of Energy and Mineral EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations