Skip to main content
Log in

Effect of support conductivity of catalytic powder on electrocatalytic hydrogenation of phenol

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Metallic nanoaggregates deposited on non-conductive oxides powders as catalysts have shown good efficiency in electrocatalytic hydrogenation (ECH). In this process, the polarization of the metallic nanoaggregates is very important. This polarization can be improved when the electrode material is conductive. Thus, the goal of this work was to study the effect of the conduction of the supported material on the ECH process. Tin dioxide was chosen as oxide because it can be obtained in non-conductive or conductive form by doping with fluorine. Palladium supported catalysts powders were prepared by the sol–gel method. These electrocatalysts were characterized by XRD, SEM, TGA/DSC, FTIR and electrical conductivity. The effects of temperature and time of calcination were also investigated. Comparison of non-conductive and conductive catalysts for ECH of phenol shows that conductive F-doped SnO2 increases the rate of electrohydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cheng IF, Fernando Q, Korte N (1997) Environ Sci Technol 31:1074

    Article  CAS  Google Scholar 

  2. Ruest L, Ménard H, Moreau V, Laplante F (2002) Can J Chem 80:1662

    Article  CAS  Google Scholar 

  3. Dubé P, Kerdouss F, Laplante F, Proulx P, Brossard L, Ménard H (2003) J Appl Electrochem 33:541

    Article  Google Scholar 

  4. Mahdavi B, Lafrance A, Martel A, Lessard J, Ménard H (1997) J Appl Electrochem 27:605

    Article  CAS  Google Scholar 

  5. Kung HH, Brookes BI, Burwell JRL (1974) J Phys Chem 78:875

    Article  CAS  Google Scholar 

  6. Wismeijer AA, Kieboom APG, Van Bekkum H (1986) Recl Trav Chim Pays-Bas 105:129

    CAS  Google Scholar 

  7. Casadei MA, Pletcher D (1988) Electrochim Acta 33:117

    Article  Google Scholar 

  8. Amouzegar K, Savadogo O (1997) J Appl Electrochem 27:539

    Article  CAS  Google Scholar 

  9. Dabo P, Cyr A, Lessard J, Brossard L, Ménard H (1999) Can J Chem 77:1225

    Article  CAS  Google Scholar 

  10. Laplante F, Bouchard NA, Dubé P, Ménard H, Brossard L (2003) Can J Chem 81:1039

    Article  CAS  Google Scholar 

  11. Dubé P, Brossard L, Ménard H (2002) Can J Chem 80:345

    Article  Google Scholar 

  12. Miller LL, Christensen L (1978) J Org Chem 43:2059

    Article  CAS  Google Scholar 

  13. Misra RA, Sharma BL (1979) Electrochim Acta 24:727

    Article  CAS  Google Scholar 

  14. Park C, Keane MA (2003) J Colloid Interface Sci 266:183

    Article  CAS  Google Scholar 

  15. Cirtiu CM, Hassani HO, Bouchard NA, Rowntree PA, Ménard H (2006) Langmuir 22:6414

    Article  CAS  Google Scholar 

  16. Liberkova K, Touroude R (2002) J Mol Catal A Chem 180:221

    Article  CAS  Google Scholar 

  17. Rodrigues ECPE, Olivi P (2003) J Phys Chem Solids 64:1105

    Article  CAS  Google Scholar 

  18. Siciliano P (2000) Sen Actuators B 70:153

    Article  Google Scholar 

  19. Esteves MC, Gouvêa D, Sumodjo PTA (2004) Appl Surf Sci 229:24

    Article  CAS  Google Scholar 

  20. Mahfouz RM, Alshhri SM, Monshi MAS, El-Salam NMAS (2004) Radiat Eff Defects Solid 159:345

    Article  CAS  Google Scholar 

  21. Rella R, Serra A, Siciliano P, Vasanelli L, De G, Licciulli A (1997) Thin Solid Films 304:339

    Article  CAS  Google Scholar 

  22. Zhu G, Han J, Zemlyanov DY, Ribeiro FH (2005) J Phys Chem B 109:2331

    Article  CAS  Google Scholar 

  23. Zhang G, Liu M (1999) J Mat Sci 34:3213

    Article  CAS  Google Scholar 

  24. Maxted EB, Ali SI (1961) J Chem Soc 83:4137

    Article  Google Scholar 

  25. St-Pierre G, Chagnes A, Bouchard NA, Harvey PD, Brossard L, Ménard H (2004) Langmuir 20:6365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the “Coopération France-Burkina Faso” for the BGF funding and the University of Sherbrooke for financial and material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Brisach-Wittmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tountian, D., Brisach-Wittmeyer, A., Nkeng, P. et al. Effect of support conductivity of catalytic powder on electrocatalytic hydrogenation of phenol. J Appl Electrochem 39, 411–419 (2009). https://doi.org/10.1007/s10800-008-9686-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9686-0

Keywords

Navigation