Skip to main content
Log in

Effects of 1-butyl-3-methylimidazolium hydrogen sulfate-[BMIM]HSO4 on zinc electrodeposition from acidic sulfate electrolyte

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A comparative study of the effect of 1-butyl-3-methylimidazolium hydrogen sulfate-[BMIM]HSO4 and gelatine on current efficiency (CE), power consumption (PC), deposit morphology, and polarization behaviour of the cathode during electrodeposition of zinc from acidic sulphate solutions were investigated. Compared with the traditional industrial additive, gelatine, the addition of [BMIM]HSO4 was found to increase current efficiency, reduce power consumption, and improve the surface morphology. Maximum CE and minimum PC were obtained at the addition dosage of 5 mg dm−3. Meanwhile, simultaneous addition of the two additives induced a blocking effect of the zinc reduction and led to more leveled and fine-grained cathodic deposits. Moreover, cyclic voltammetry results and kinetic parameters such as Tafel slope, transfer coefficient, and exchange current density obtained from Tafel plots led to the conclusion that both additives have a pronounced inhibiting effect on Zn2+ electroreduction. The data obtained from X-ray diffractogram revealed that the presence of additives did not change the structure of the electrodeposited zinc but affected the crystallographic orientation of the crystal planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guillaume P, Leclerc N, Boulanger C, Lecuire JM, Lapicque F (2007) J Appl Electrochem 37:1237

    Article  CAS  Google Scholar 

  2. Mackinnon DJ, Brannen JM, Kerby RC (1979) J Appl Electrochem 9:55

    Article  CAS  Google Scholar 

  3. Mackinnon DJ, Brannen JM, Kerby RC (1979) J Appl Electrochem 9:71

    Article  CAS  Google Scholar 

  4. Ault AR, Frazer EJ (1988) J Appl Electrochem 18:583

    Article  CAS  Google Scholar 

  5. Muresan L, Maurin G, Oniciu L, Gaga D (1996) Hydrometallurgy 43:345

    Article  CAS  Google Scholar 

  6. Robinson DJ, O’Keefe TJ (1976) J Appl Electrochem 6:1

    Article  CAS  Google Scholar 

  7. MacKinnon DJ, Brannen JM, Fenn PL (1987) J Appl Electrochem 17:1129

    Article  CAS  Google Scholar 

  8. MacKinnon DJ, Morrison RM, Mouland JE, Warren PE (1990) J Appl Electrochem 20:728

    Article  CAS  Google Scholar 

  9. Sato R (1959) J Electrochem Soc 106:206

    Article  CAS  Google Scholar 

  10. Piron DL, Mathieu D, Amboise MD (1981) Can J Chem Eng 65:685

    Article  Google Scholar 

  11. Hosny AY (1993) Hydrometallurgy 34:361

    Google Scholar 

  12. Karavasteva M, Karaivanov SA (1993) J Appl Electrochem 23:763

    Article  CAS  Google Scholar 

  13. Karavasteva M (1994) Hydrometallurgy 35:391

    Article  CAS  Google Scholar 

  14. Das SC, Singh P, Hefter GT (1996) J Appl Electrochem 26:1245

    Article  CAS  Google Scholar 

  15. Das SC, Singh P, Hefter GT (1997) J Appl Electrochem 27:738

    Article  CAS  Google Scholar 

  16. Tripathy BC, Das SC, Singh P, Hefter GT (1997) J Appl Electrochem 27:673

    Article  CAS  Google Scholar 

  17. Tripathy BC, Das SC, Singh P, Hefter GT (1999) J Appl Electrochem 29:1229

    Article  CAS  Google Scholar 

  18. Tripathy BC, Das SC, Hefter GT, Singh P (1998) J Appl Electrochem 28:915

    Article  CAS  Google Scholar 

  19. Tripathy BC, Das SC, Singh P, Hefter GT, Misra VN (2004) J Appl Electrochem 565:49

    CAS  Google Scholar 

  20. Forsyth SA, Pringle JM, MacFarlane DR (2004) Aust J Chem 57:113

    Article  CAS  Google Scholar 

  21. Endres F, El Abedin SZ, Matter S (2006) Phys Chem Chem Phys 8:2101

    Article  CAS  Google Scholar 

  22. Hua Z, Shuqian X, Peisheng M (2005) Chem Technol Biot 80:1089

    Article  CAS  Google Scholar 

  23. Abbott AP, McKenzie KJ (2006) Phys Chem Chem Phys 84:265

    Google Scholar 

  24. Endres F (2002) ChemPhysChem 3:144

    Article  CAS  Google Scholar 

  25. Sato T, Maruo T, Marukane S, Takagi K (2004) J Power Sources 138:253

    Article  CAS  Google Scholar 

  26. Ue M, Takeda M, Toriumi A, Kominato A, Hagiwara R, Ito Y (2003) J Electrochem Soc 150:499

    Article  CAS  Google Scholar 

  27. Balducci A, Bardi U, Caporali S, Mastragostino M, Soavi F (2004) Electrochem Commun 6:566

    Article  CAS  Google Scholar 

  28. Moens L, Blake DM, Rudnicki DL, Hale MJ (2003) J Solar Energy Eng 125:112

    Article  CAS  Google Scholar 

  29. Jim′enez AE, Berm′udez MD, Iglesias P, Carri′on FJ, Mart′ınez-Nicol′as G (2006) Wear 260:766

    Article  CAS  Google Scholar 

  30. Kamimura H, Kubo T, Minami I, Mori S (2007) Tribol Int 40:620

    Article  CAS  Google Scholar 

  31. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  32. Yong Z (2005) Curr Nanosci 1:35

    Article  Google Scholar 

  33. Xiao XH, Zhao L, Liu X, Jiang SX (2004) Anal Chim Acta 519:207

    Article  CAS  Google Scholar 

  34. Zhang CD, Malhotra SV (2005) Talanta 67:560

    Article  CAS  Google Scholar 

  35. Saba AE, Elsherief AE (2000) Hydrometallurgy 54:91

    Article  CAS  Google Scholar 

  36. Whitehead JA, Lawrance GA, McCluskey A (2004) Aust J Chem 57:151

    Article  CAS  Google Scholar 

  37. Varvara S, Muresan L, Nicoar A, Maurin G, Popescu IC (2001) Mater Chem Phys 72:332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank XinSheng Li for assistance in SEM and gratefully acknowledge the financial support of the National Natural Science Foundation of China (Project No. 50564006) and the Natural Science Foundation of Yunnan Province (Project No. 2005E0004Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Hua, Y. Effects of 1-butyl-3-methylimidazolium hydrogen sulfate-[BMIM]HSO4 on zinc electrodeposition from acidic sulfate electrolyte. J Appl Electrochem 39, 261–267 (2009). https://doi.org/10.1007/s10800-008-9665-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9665-5

Keywords

Navigation