Skip to main content
Log in

Derivation of the explicit equation relating mass-transport-limited-current to voltage at the interface between two immiscible electrolyte solutions (ITIES)

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The potential drop between two immiscible electrolyte solutions consists of the sum of that across the double layer and the diffusion barrier layer. A relation between these components has been proposed by Indenbom. We extended his approach to give a relation between the current density and the overall potential drop between the two bulk solutions. The final expression is mathematically similar to the Butler–Volmer equation for classical electrode kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vanýsek P (1993) Trends Anal Chem 12:357

    Article  Google Scholar 

  2. Koryta J, Vanýsek P, Březina M (1976) J Electroanal Chem 67:263

    Article  CAS  Google Scholar 

  3. Vanýsek P (1995) Electrochim Acta 40:2841

    Article  Google Scholar 

  4. Karpfen FM, Randles JEB (1953) Trans Faraday Soc 49:823

    Article  CAS  Google Scholar 

  5. Koryta J (1987) Electrochim Acta 32:419

    Article  CAS  Google Scholar 

  6. Koryta J (1979) Electrochim Acta 24:293

    Article  CAS  Google Scholar 

  7. Koryta J (1980) Hung Scientific Instruments 49:25

    CAS  Google Scholar 

  8. Samec Z (1988) Chem Rev 88:617

    Article  CAS  Google Scholar 

  9. Samec Z, Mareček V, Koryta J, Khalil MW (1977) J Electroanal Chem 83:393

    Article  CAS  Google Scholar 

  10. Gavach C, Henry F (1974) J Electroanal Chem 54:361

    Article  CAS  Google Scholar 

  11. Girault HH (1987) Electrochim Acta 32:383

    Article  CAS  Google Scholar 

  12. Markin VS, Volkov AG (1990) Electrochim Acta 35:715

    Article  CAS  Google Scholar 

  13. Indenbom AV (1995) Electrochim Acta 40:2985

    Article  CAS  Google Scholar 

  14. Mareček V, Samec Z, Koryta J (1988) Adv Colloid Interface Sci 29:1

    Article  Google Scholar 

  15. Indenbom AV (1994) Biol Mem 7:47

    Google Scholar 

  16. Schlichting H, Gertsen K (2000) Boundary layer theory. Springer Verlay, Berlin

    Google Scholar 

  17. Manzanares JA, Kontturi K (2003) In: Bard AJ, Stratmann M, Calvo EJ (ed) Encyclopedia of electrochemistry. Wiley, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vignali.

Appendix

Appendix

1.1 The following values have been assigned to the variables in the correlations

Faraday Constant: F = 96,485/C mol−1; Gas Constant: R = 8.314/J mol−1 K−1; Absolute temperature: T = 298/K; Standard transfer potential of the X ion: \( \Updelta_{\text{O}}^{\text{W}} \mathop \Upphi \nolimits_{{{\text{X}}^{ + } }}^{0} \) = 0.100/V; Standard transfer potential of the Y ion: \( \Updelta_{\text{O}}^{\text{W}} \mathop \Upphi \nolimits_{{{\text{Y}}^{ - } }}^{0} \) = 0.800/V; Diffusivity of the ion X in water: \( {\text{D}}_{{{\text{X}}^{ + } }}^{\text{W}} \) = 10−15/m2 s−1; Diffusivity of the ion X in the organic phase: \( {\text{D}}_{{{\text{X}}^{ + } }}^{\text{O}} \) = 10−10/m2 s−1; Diffusivity of the ion Y in water: \( {\text{D}}_{{{\text{Y}}^{ - } }}^{\text{W}} \) = 10−15/m2 s−1; Diffusivity of the ion Y in the organic phase: \( {\text{D}}_{{{\text{Y}}^{ - } }}^{\text{O}} \) = 10−10/m2 s−1; Bulk concentration of ion X in the organic phase: \( {\text{c}}_{{{\text{X}}^{ + } }}^{\text{O}} \) = 10−6/mol m−3; Diffusion layer thickness in the organic phase: \( \delta_{\text{O}} \) = 10−7/m; Diffusion layer thickness in the water phase: \( \delta_{\text{W}} \) = \( \delta_{\text{O}}; \) Charge of the ion X: zX = 1; Charge of the ion Y: zY = −1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, R.A.H., Vignali, M. & Cunnane, V.J. Derivation of the explicit equation relating mass-transport-limited-current to voltage at the interface between two immiscible electrolyte solutions (ITIES). J Appl Electrochem 39, 205–211 (2009). https://doi.org/10.1007/s10800-008-9656-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9656-6

Keywords

Navigation