Journal of Applied Electrochemistry

, Volume 39, Issue 1, pp 147–154 | Cite as

Synthesis of pyridine derivatives and their influence as additives on the photocurrent of dye-sensitized solar cells

  • Xiong Yin
  • Weiwei Tan
  • Jingbo ZhangEmail author
  • Yuan LinEmail author
  • Xurui Xiao
  • Xiaowen Zhou
  • Xueping Li
  • Babasaheb Raghunath Sankapal
Original Paper


New kinds of additive, 4-alkyloxypyridne derivatives, were synthesized by introducing an alkyloxy group into the 4-position of 2-methylpyridine. The influence of these electrolyte additives on the short-circuit photocurrent (J sc) of dye sensitized solar cells was investigated by combining electrochemical and spectral techniques. With the addition of pyridine derivatives to the electrolyte, a decrease in the rate of dye regeneration was observed by laser flash photolysis measurements and cyclic voltammetry, whereas, measurement of electrochemical impedence spectra showed an increase in the charge transfer resistance due to the formation of a complex between the pyridine derivatives and iodine, as identified by an absorption peak around 378 nm in the UV–Vis spectra. This leads to a decrease in J sc of dye-sensitized solar cells. This adverse effect on the J sc can be attributed to reaction or coordination between the dye cations and the iodine in the electrolyte.


Dye sensitized solar cell Pyridine derivatives Charge transfer complex Cyclic voltammetry Laser flash photolysis 



This work was supported by the National Research Fund for Fundamental Key Project (2006CB202605) and the National Natural Science Foundation of China (50221201 and 50473055). Thanks to Qiqiang Wang and Min Liu for the help towards the synthesis. Experimental help from Shujing Feng and Hanping Zhang are gratefully acknowledged.


  1. 1.
    O’Regan B, Grätzel M (1991) Nature 353:737CrossRefGoogle Scholar
  2. 2.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Valchopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382CrossRefGoogle Scholar
  3. 3.
    Grätzel M (2001) Nature 414:338CrossRefGoogle Scholar
  4. 4.
    Palomares E, Clifford JN, Haque SA, Lutz T, Durrent JR (2003) J Am Chem Soc 125:475CrossRefGoogle Scholar
  5. 5.
    Schlichthörl G, Huang SY, Sprague J, Frank AJ (1997) J Phys Chem B 101:8141CrossRefGoogle Scholar
  6. 6.
    Hong JS, Joo M, Vittal R, Kim KJ (2002) J Electrochem Soc 149:E493CrossRefGoogle Scholar
  7. 7.
    Neal NR, Kopidakis N, Lagemant J, Grätzel M, Frank AJ (2005) J Phys Chem B 109:23183CrossRefGoogle Scholar
  8. 8.
    Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S (2005) J Phys Chem B 109:3480CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Evans N, Zakeeruddin SM, Humphry-Baker R, Grätzel M (2007) J Phys Chem C 111:398CrossRefGoogle Scholar
  10. 10.
    Kusama H, Sugihara H (2006) Sol Energy Mater Sol Cells 90:953CrossRefGoogle Scholar
  11. 11.
    Wang M, Zhang QL, Weng YX, Lin Y, Xiao XR (2006) Chin Phys Lett 23:724CrossRefGoogle Scholar
  12. 12.
    Yin X, Zhao H, Cheng LP, Tan WW, Zhang JB, Weng YX, Shuai ZG, Xiao XR, Zhou XW, Li XP, Lin Y (2007) Surf Interface Anal 39:809CrossRefGoogle Scholar
  13. 13.
    Wang GQ, Lin Y, Xiao XR, Li XP, Wang WB (2004) Surf Interface Anal 36:1437CrossRefGoogle Scholar
  14. 14.
    Wang M, Xiao XR, Zhou XW, Li XP, Lin Y (2007) Sol Energy Mater Sol Cells 91:785CrossRefGoogle Scholar
  15. 15.
    Wang GQ, Zhou XW, Li MY, Zhang JB, Kang JJ, Lin Y, Fang SB, Xiao XR (2004) Mater Res Bull 39:2113CrossRefGoogle Scholar
  16. 16.
    Gan Q, Li SY, Morlet-Savary F, Wang SQ SQ, Shen S, Xu HJ, Yang GQ (2005) Opt Express 13:5424CrossRefGoogle Scholar
  17. 17.
    Zhang CX, Liang HC, Kim E-i , Shearer J, Helton ME, Kim E, Kaderli S, Incarvito CD, Zuberbühler AD, Rheingold AL, Karlin KD (2003) J Am Chem Soc 125:634CrossRefGoogle Scholar
  18. 18.
    Hom RK, Chi DY, Katzenellenbogen JA (1996) J Org Chem 61:2624CrossRefGoogle Scholar
  19. 19.
    Zhang CX, Kaderli S, Costas M, Kim E-i , Neuhold YM, Karlin KD, Zuberbühler AD (2003) Inorg Chem 42:1807CrossRefGoogle Scholar
  20. 20.
    Nogueira AF, De Paoli MA, Montanari I, Monkhouse R, Nelson J, Durrant JR (2001) J Phys Chem B105:751Google Scholar
  21. 21.
    Wang P, Zakeerudin SM, Comte P, Exnar I, Grätzel M (2003) J Am Chem Soc 125:1166CrossRefGoogle Scholar
  22. 22.
    Clifford JN, Palomares E, Nazeruddin K, Grätzel M, Durrant JR (2007) J Phys Chem C 111:6561CrossRefGoogle Scholar
  23. 23.
    Nour-Monammadi F, Nguyen HT, Boschloo G, Lund T (2007) J Photochem Photobiol A Chem 187:348CrossRefGoogle Scholar
  24. 24.
    Chen H, Li Z, Ye H, Wang M (2004) Mater Sci Eng B 111:242Google Scholar
  25. 25.
    Hauch A, Geory A (2001) Electrochim Acta 46:3457CrossRefGoogle Scholar
  26. 26.
    Popov AI, Skelly NE (1995) J Am Chem Soc 77:3722CrossRefGoogle Scholar
  27. 27.
    Kebede Z, Lindquist S-E (1999) Sol Energy Mater Sol Cells 57:259CrossRefGoogle Scholar
  28. 28.
    Tassaing T, Besnard M (1997) J Phys Chem A 101:2803CrossRefGoogle Scholar
  29. 29.
    Nazmutdinova G, Sensfuss S, Schrödner M, Hinsch A, Sastrawan R, Gerhard D, Himmler S, Wasserscheid P (2006) Solid state Ion 177:3141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Xiong Yin
    • 1
    • 2
  • Weiwei Tan
    • 1
    • 2
  • Jingbo Zhang
    • 1
    Email author
  • Yuan Lin
    • 1
    Email author
  • Xurui Xiao
    • 1
  • Xiaowen Zhou
    • 1
  • Xueping Li
    • 1
  • Babasaheb Raghunath Sankapal
    • 3
  1. 1.Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.Thin Film and Nano Science Laboratory, Department of PhysicsNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations