Skip to main content
Log in

Effects of electrolyte parameters on the iron/steel cathode potential in the chlorate process

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study focuses on how different electrolyte parameters of the chlorate process affect the cathode potential for hydrogen evolution on iron in a wide current-density range. The varied parameters were pH, temperature, mass transport conditions and the ionic concentrations of chloride, chlorate, chromate and hypochlorite. At lower current densities, where cathodic protection of the electrode material is important, the pH buffering capacity of the electrolyte influenced the potential to a large extent. It could be concluded that none of the electrolyte parameters had any major effects (<50 mV) on the chlorate-cathode potential at industrially relevant current densities (around 3 kA m−2). Certainly, there is more voltage to gain from changing the cathode material than from modifying the electrolyte composition. This is exemplified by experiments on steel corroded from operation in a chlorate plant, which exhibits significantly higher activity for hydrogen evolution than polished steel or iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c i :

Concentration of species i (mol m−3)

D i :

Diffusion coefficient of species i (m2 s−1)

E :

Cathode potential vs reference electrode (Ag/AgCl) (V)

F :

Faraday constant (As mol−1)

j k :

Current density for reaction k (A m−2)

\( k^{\prime}_{2} \) :

Coefficient in the Tafel expression of Eq. 2, which is given in Eq. 15 (mol m−2 s−1)

k 14 :

Coefficient in the Tafel expression of Eq. 14, which is given in equation 16 (m s−1)

N i :

Molar flux of species i (mol m−2 s−1)

R :

Universal gas constant (J mol−1 K−1)

R i :

Homogeneous production rate of species i (mol m−3 s−1)

T :

Temperature (K)

u z :

Convective velocity perpendicular to the electrode surface, i.e. in the direction of the z-axis (m s−1)

z :

Axial coordinate (m)

α:

Transfer coefficient

δ D :

Diffusion layer (m)

δ R :

Reaction layer (m)

References

  1. Cornell A, Lindbergh G, Simonsson D (1992) Electrochim Acta 37:1873

    Article  CAS  Google Scholar 

  2. Tilak BV, Tari K, Hoover CL (1988) J Electrochem Soc 135:1386

    Article  CAS  Google Scholar 

  3. Cornell A, Simonsson D (1993) J Electrochem Soc 140:3123

    Article  CAS  Google Scholar 

  4. Lindbergh G, Simonsson D (1990) J Electrochem Soc 137:3094

    Article  CAS  Google Scholar 

  5. Lindbergh G, Simonsson D (1991) Electrochim Acta 36:1985

    Article  CAS  Google Scholar 

  6. Ahlberg Tidblad A, Lindbergh G (1991) Electrochim Acta 36:1605

    Article  Google Scholar 

  7. Schumacher JW, Bradley R, Leder A, Takei N (1999) CEH product review, The chemical economics handbook-SRI international

  8. Coleman JE (1981) In: Alkire R, Beck T (eds) Tutorial lectures in electrochemical engineering and technology, vol 77. American institute of chemical engineering symposium series no. 204, Institute of Chemical Engineers, New York, p 244

  9. Andolfatto F, Joubert P, Duboeuf G (2004) FR 2852973

  10. Guay D, Roue L, Schulz R, Bonneau M-E (2006) CA 2492128

  11. Chow N, Socol J, Oehr K, Remple G (2006) WO 2006039804

  12. Krstajic N, Jovic V, Martelli GN (2007) WO 2007063081

  13. Jackson JR, Zhao M (2005) US 2005011753

  14. Håkansson B, Fontes E, Herlitz F, Lindstrand V (2004) US 2004124094

  15. Cornell A, Håkansson B, Lindbergh G (2003) Electrochim Acta 48:473

    Article  CAS  Google Scholar 

  16. Nylén L, Cornell A (2006) J Electrochem Soc 153:D14

    Article  Google Scholar 

  17. Coleman JE and Tilak BV (1995) In: McKetta JJ (ed) Encyclopedia of chemical processing and design. Marcel Dekker, Inc. N.Y., p 126

  18. Tilak BV, Chen C-P (1999) In: Burney HS, Furuya N, Hine F, Ota KI (eds) Chlor-alkali and chlorate technology, PV 99–21. The electrochemical society proceedings series, Pennington, NJ, p 8

  19. Ibl N, Vogt H (1981) In: Bockris JO′M, Conway BE, Yeager E, White RE (eds) Comprehensive treatise of electrochemistry, vol 2. Plenum Press, New York, p 167

  20. Jaksic MM (1974) J Electrochem Soc 121:70

    Article  CAS  Google Scholar 

  21. Hammar L, Wranglén G (1964) Electrochim Acta 9:1

    Article  CAS  Google Scholar 

  22. Wulff J, Cornell A (2007) J Appl Electrochem 37:181

    Article  CAS  Google Scholar 

  23. Hardee KL, Mitchell LK (1989) J Electrochem Soc 136:3314

    Article  CAS  Google Scholar 

  24. Eberil VI, Fedotova NS, Novikov EA, Mazanko AF (2000) Elektrokhimiya 36:1463

    Google Scholar 

  25. Eberil VI, Fedotova NS, Novikov EA (1997) Elektrokhimiya 33:610

    Google Scholar 

  26. Elina LM, Gitneva VM, Bystrov VI, Shmygul NM (1974) Elektrokhimiya 10:68

    CAS  Google Scholar 

  27. Cornell A, Håkansson B, Lindbergh G (2003) J Electrochem Soc 150:D6

    Article  CAS  Google Scholar 

  28. Jaksic MM, Nikolic BZ, Karanovic DM, Milovanovic CR (1969) J Electrochem Soc 116:394

    Article  CAS  Google Scholar 

  29. YuV Dobrov, Elina LM (1967) Zashch Met 3:618

    Google Scholar 

  30. Nylén L, Behm M, Cornell A, Lindbergh G (2007) Electrochim Acta 52:4513

    Article  Google Scholar 

  31. Albery J (1975) Electrode kinetics. Clarendon Press, Oxford, p 125

    Google Scholar 

  32. Hurlen T, Gunvaldsen S, Blaker F (1984) Electrochim Acta 29:1163

    Article  CAS  Google Scholar 

  33. Ahlberg Tidblad A, Mårtensson J (1997) Electrochim Acta 42:389

    Article  Google Scholar 

  34. Vračar LJ, Dražić DM (1992) J Electroanal Chem 339:269

    Article  Google Scholar 

  35. Byrne P, Fontes E, Parhammar O, Lindbergh G (2001) J Electrochem Soc 148:D125

    Article  CAS  Google Scholar 

  36. Koryta J, Dvorák J (1987) Principles of electrochemistry. Wiley, Great Britain, pp 264–276

  37. Tamm J, Tamm L, Vares P (2000) Elektrokhimiya 36:1327

    Google Scholar 

  38. Jin S, Van Neste A, Ghali E, Boily S, Schultz R (1997) J Electrochem Soc 144:4272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Swedish Energy Agency, Eka Chemicals AB and Permascand AB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Nylén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nylén, L., Cornell, A. Effects of electrolyte parameters on the iron/steel cathode potential in the chlorate process. J Appl Electrochem 39, 71–81 (2009). https://doi.org/10.1007/s10800-008-9642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9642-z

Keywords

Navigation