Journal of Applied Electrochemistry

, Volume 39, Issue 1, pp 31–38 | Cite as

Influence of the particle size on the mechanical and electrochemical behaviour of micro- and nano-nickel matrix composite coatings

  • C. ZanellaEmail author
  • M. Lekka
  • P. L. Bonora
Original Paper


The aim of this work is the production and characterization of composite nickel matrix electrodeposits. Pure nickel and composite nickel matrix deposits containing either micro- or nano-particles of silicon carbide were prepared using a Watts type bath. The electrodeposition was carried out under both direct and pulse current conditions at different frequencies. With the same quantity of powder in the bath, the embedded micro-powder content is about 25–30%w while the nano-powder content is always less than 1%w. The mechanical properties of the nano-composites increases despite the low ceramic content. SEM micrographs of the microstructure and XRD-line profile analysis show that the presence of ceramic powder in both baths changes the crystallisation process leading to enhanced mechanical properties even at ceramic contents less than 1%, as in the nano-composite case. The presence of the ceramic phase and changes in the microstructure both decrease the mass loss during abrasion by up to 70% for micro-composites and 45% for nano-composites.


SiC Nano-particles Codeposition Nickel Pulse current 



The authors thank the microstructures group of the Department of Material Engineering and Industrial Technologies of the University of Trento for the XRD measurements and in particular Prof. Paolo Scardi for useful discussion.


  1. 1.
    Guglielmi N (1972) J Electrochem Soc 119:1009CrossRefGoogle Scholar
  2. 2.
    Roos JR, Celis JP, Fransaer J, Buelens C (1990) J Metals 42:60Google Scholar
  3. 3.
    Hovestad R, Janssen LJJ (1995) Rev Appl Electrochem 40:519CrossRefGoogle Scholar
  4. 4.
    Benea L, Bonora PL, Borello R, Martelli A (2002) Wear 249:995CrossRefGoogle Scholar
  5. 5.
    Zimmermann AF, Palumbo G, Aust KT, Erb U (2002) Mater Sci Eng A328:137Google Scholar
  6. 6.
    Hou KH, Ger MD, Wang LM (2002) Wear 253:994CrossRefGoogle Scholar
  7. 7.
    Garcia I, Fransaer J, Celis JP (2001) Surf Coat Technol 148:171CrossRefGoogle Scholar
  8. 8.
    Low CTJ, Willis RGA, Walsh FC (2006) Surf Coat Technol 201:371CrossRefGoogle Scholar
  9. 9.
    Gyftou P, Stroumbouli M, Pavlatou EA, Asimidis K, Spyrellis N (2005) Electrochim Acta 50:4544CrossRefGoogle Scholar
  10. 10.
    Lekka M, Kouloumbi N, Gajo M, Bonora PL (2005) Electrochim Acta 50:4551CrossRefGoogle Scholar
  11. 11.
    Surender M, Balasubramanian R, Basu B (2004) Surf Coat Technol 187:93CrossRefGoogle Scholar
  12. 12.
    Garcia I, Conde A, Langelaan G, Fransaer J, Celis JP (2003) Corros Sci 45:1173CrossRefGoogle Scholar
  13. 13.
    Medelienè V (2002) Surf Coat Technol 154:104CrossRefGoogle Scholar
  14. 14.
    Malfatti CF, Ferreira JZ, Santos CB, Souza BV, Fallavena EP, Vaillant S, Bonino JP (2005) Corros Sci 47:567CrossRefGoogle Scholar
  15. 15.
    Pavlatou EA, Stroumbouli M, Gyftou P, Spyrellis N (2006) J Appl Electrochem 36:385CrossRefGoogle Scholar
  16. 16.
    Zimmerman AF, Clark DG, Aust KT, Erb U (2002) Mater Lett 52:85CrossRefGoogle Scholar
  17. 17.
    Williamson GK, Hall WH (1953) Acta Metall 1:22CrossRefGoogle Scholar
  18. 18.
    Cullity (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley Publishing, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.DIMTI, laboratorio di anticorrosioneUniversità di TrentoTrentoItaly

Personalised recommendations