Skip to main content
Log in

SERS and EQCM studies on the effect of allyl thiourea on copper dissolution and deposition in aqueous sulfuric acid

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We investigated the effect of allyl thiourea (ATU) on both the electrodeposition and electrodissolution of copper in aqueous sulfuric acid by combining cyclic voltammetry (CV) with electrochemical quartz crystal microbalance (EQCM) studies and surface enhanced Raman spectroscopy (SERS). The results demonstrated that the two-electron transfer reaction is the predominant process for the copper dissolution–deposition process in 1.0 M H2SO4 solution not containing ATU in the potential range −0.65 to 0.05 V versus SCE. In comparison, the copper dissolution–deposition process in 1.0 M H2SO4 solution containing ATU corresponds to a one-electron transfer reaction. The spectral features observed from the SERS studies showed at molecular level that ATU can be adsorbed tilted to the copper electrode surface and that coordination occurs via the sulfur atom. The secondary amino group is nearer to the surface than the primary amino group. SO 2−4 and HSO 4 can be coadsorbed on the protonated −NH (CH2CHCH2) groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tantavichet N, Pritzker MD (2005) Electrochim Acta 50:1849

    Article  CAS  Google Scholar 

  2. Cofré P, Bustos A (1994) J Appl Electrochem 24:564

    Article  Google Scholar 

  3. Yoon S, Schwartz M, Nobe K (1994) Plat Surf Finish 81:65

    CAS  Google Scholar 

  4. Farndon EE, Walsh FC, Campbell SA (1995) J Appl Electrochem 25:574

    Article  CAS  Google Scholar 

  5. Campbell SA, Farndon EE, Walsh FC, Kalaji M (1997) Trans Inst Met Fin 75:10

    CAS  Google Scholar 

  6. Alodan MA, Smyrl WH (1998) J Electrochem Soc 145:957

    Article  CAS  Google Scholar 

  7. Tarallo A, Heerman L (1999) J Appl Electrochem 29:585

    Article  CAS  Google Scholar 

  8. Muresan L, Varvara S, Maurin G, Dorneanu S (2000) Hydrometallurgy 54:161

    Article  CAS  Google Scholar 

  9. Awad MK (2004) J Electroanal Chem 567:219

    Article  CAS  Google Scholar 

  10. Haseeb ASMA, Schilardi PL, Bolzán AB, Piatti RCV, Salverezza RC, Arvia AJ (2001) J Electroanal Chem 500:543

    Article  CAS  Google Scholar 

  11. Gassa LM, Lambi JN, Bolzán AE, Arvia AJ (2002) J Electroanal Chem 527:71

    Article  CAS  Google Scholar 

  12. Bolzán AE, Wakenge IB, Piatti RCV, Salvarezza RC, Arvia AJ (2001) J Electroanal Chem 501:241

    Article  Google Scholar 

  13. Łukomska A, Sobkowski J (2006) J Electroanal Chem 592:68

    Article  Google Scholar 

  14. Bolzán AE, Piatti RCV, Salvarezza RC, Arvia AJ (2002) J Appl Electrochem 32:611

    Article  Google Scholar 

  15. Alodan MA, Smyrl WH (1998) Electrochim Acta 44:299

    Article  CAS  Google Scholar 

  16. Láng GG, Ujvári M, Horányi G (2002) J Electroanal Chem 522:179

    Article  Google Scholar 

  17. Loo BH (1982) Chem Phys Lett 89:346

    Article  CAS  Google Scholar 

  18. Brown GM, Hope GA, Schweinsberg DP, Fredericks PM (1995) J Electroanal Chem 380:161

    Article  Google Scholar 

  19. Brown GM, Hope GA (1995) J Electroanal Chem 382:179

    Article  Google Scholar 

  20. Brown GM, Hope GA (1996) J Electroanal Chem 405:211

    Article  Google Scholar 

  21. Brown GM, Hope GA (1996) J Electroanal Chem 413:153

    Article  Google Scholar 

  22. Zhong QL, Huang QJ, Liu FM, Yao JL, Wang ZQ, Xiong LH, Tian ZQ (1997) Chin J Appl Chem 14:13

    CAS  Google Scholar 

  23. Szymaszek A, Biernat J, Pajdowski L (1997) Electrochim Acta 22:359

    Article  Google Scholar 

  24. Javet P, Hintermann HE (1969) Electrochim Acta 14:527

    Article  CAS  Google Scholar 

  25. Bertocci U, Turner DR (1997) In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements, vol. II. Marcel Dekker, New York

    Google Scholar 

  26. Korshin GV, Petukhov AA, Kuznetsov AM, Vyzhimov YM (1991) Elektrokhimiya 27:275

    CAS  Google Scholar 

  27. Mendez S, Andreasen G, Schilardi PL, Figueroa M, Vázquez L, Salvarezza RC, Arvia AJ (1998) Langmuir 14:2515

    Article  CAS  Google Scholar 

  28. Upadhayay DN, Yegnaraman V (2000) Mat Chem Phys 62:247

    Article  Google Scholar 

  29. Shen CB, Wang SG, Yang HY, Long K, Wang FH (2006) Appl Surf Sci 253:2118

    Article  CAS  Google Scholar 

  30. Dong JH, Song GL, Cao CN, Lin HC (1996) Acta Phys Chim 12:252

    CAS  Google Scholar 

  31. Sauerbrey G (1959) Z Phys 155:206

    Article  CAS  Google Scholar 

  32. Gabrielli C, Keddan M, Tonesi RM (1991) J Electrochem Soc 138:2657

    Article  CAS  Google Scholar 

  33. Tian ZQ, Ren B, DH Wu (2002) J Phys Chem B 106:9463

    Article  CAS  Google Scholar 

  34. Marlot A, Vedel J (1999) J Electrochem Soc 146:177

    Article  CAS  Google Scholar 

  35. Matias JGN, Juliao JF, Soares DM, Gorenstein A (1997) J Electroanal Chem 451:163

    Article  Google Scholar 

  36. Kemell M, Saloniemi H, Ritala M, Leskelä M (2000) Electrochim Acta 45:3737

    Article  CAS  Google Scholar 

  37. Schumacher R, Borges G, Kanazawa KK (1985) Surf Sci 163:L621

    Article  CAS  Google Scholar 

  38. Liu ZJ, Wu GZ (2004) Chem Phys Lett 389:298

    Article  CAS  Google Scholar 

  39. Swaminathan K, Irving NH (1964) J Inorg Nucl Chem 26:1291

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China and the Natural Science Foundation of Fujian Province under Contracts 20433040 and E0310026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Liang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GL., Lin, H., Lu, JH. et al. SERS and EQCM studies on the effect of allyl thiourea on copper dissolution and deposition in aqueous sulfuric acid. J Appl Electrochem 38, 1501–1508 (2008). https://doi.org/10.1007/s10800-008-9592-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9592-5

Keywords

Navigation