Journal of Applied Electrochemistry

, Volume 38, Issue 8, pp 1127–1133 | Cite as

Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes

  • S. Bebelis
  • H. Karasali
  • C. G. Vayenas
Original Paper


The electrochemical promotion of the CO2 hydrogenation reaction on porous Rh catalyst–electrodes deposited on Y2O3-stabilized-ZrO2 (or YSZ), an O2− conductor, was investigated under atmospheric total pressure and at temperatures 346–477 °C, combined with kinetic measurements in the temperature range 328–391 °C. Under these conditions CO2 was transformed to CH4 and CO. The CH4 formation rate increased by up to 2.7 times with increasing Rh catalyst potential (electrophobic behavior) while the CO formation rate was increased by up to 1.7 times with decreasing catalyst potential (electrophilic behavior). The observed rate changes were non-faradaic, exceeding the corresponding pumping rate of oxygen ions by up to approximately 210 and 125 times for the CH4 and CO formation reactions, respectively. The observed electrochemical promotion behavior is attributed to the induced, with increasing catalyst potential, preferential formation on the Rh surface of electron donor hydrogenated carbonylic species leading to formation of CH4 and to the decreasing coverage of more electron acceptor carbonylic species resulting in CO formation.


Electrochemical promotion NEMCA Effect CO2 Hydrogenation Rhodium Rh YSZ 


  1. 1.
    Lintz HG, Vayenas CG (1989) Angew Chem Int Ed Engl 28(6):708CrossRefGoogle Scholar
  2. 2.
    Vayenas CG, Bebelis S, Neophytides S, Yentekakis IV (1989) Appl Phys A 49:95CrossRefGoogle Scholar
  3. 3.
    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625CrossRefGoogle Scholar
  4. 4.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D, (2001) In: Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer Academic Publishers/Plenum Press, New YorkGoogle Scholar
  5. 5.
    Karagiannakis G, Zisekas S, Stoukides M (2003) Solid State Ionics 162–163:313CrossRefGoogle Scholar
  6. 6.
    Pekridis G, Kalimeri K, Kaklidis N, Vakouftsi E, Iliopoulou EF, Athanasiou C, Marnellos GE (2007) Catal Tod 27:337CrossRefGoogle Scholar
  7. 7.
    Bebelis S, Karasali H, Vayenas CG (2008) Solid State Ionics. doi: 10.1016/j.ssi.2008.02.043
  8. 8.
    Bebelis S, Vayenas CG (1989) J Catal 118:125CrossRefGoogle Scholar
  9. 9.
    Solymosi F, Erdohelyi A, Bansagi T (1981) J Catal 68:371CrossRefGoogle Scholar
  10. 10.
    Solymosi F, Knözinger H (1990) J Catal 122:166CrossRefGoogle Scholar
  11. 11.
    Henderson MA, Worley SD (1985) Surf Sci 149:L1CrossRefGoogle Scholar
  12. 12.
    Solymosi F, Pasztor M (1987) J Catal 104:312CrossRefGoogle Scholar
  13. 13.
    Vayenas CG, Brosda S, Pliangos C (2001) J Catal 203:329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Benaki Phytopathological InstituteAthensGreece

Personalised recommendations