Temperature programmed desorption of oxygen from Pd films interfaced with Y2O3-doped ZrO2

  • A. Katsaounis
Original Paper


The origin of the effect of non-faradaic electrochemical modification of catalytic activity (NEMCA) or Electrochemical Promotion was investigated via temperature-programmed-desorption (TPD) of oxygen, from polycrystalline Pd films deposited on 8 mol%Y2O3–stabilized–ZrO2 (YSZ), an O2− conductor, under high-vacuum conditions and temperatures between 50 and 250 °C. Oxygen was adsorbed both via the gas phase and electrochemically, as O2−, via electrical current application between the Pd catalyst film and a Au counter electrode. Gaseous oxygen adsorption gives two adsorbed atomic oxygen species desorbing at about 300 °C (state β1) and 340–500 °C (state β2). The creation of the low temperature peak is favored at high exposure times (exposure >1 kL) and low adsorption temperatures (Tads < 200 °C). The decrease of the open circuit potential (or catalyst work function) during the adsorption at high exposure times, indicates the formation of subsurface oxygen species which desorbs at higher temperatures (above 450 °C). The desorption peak of this subsurface oxygen is not clear due to the wide peaks of the TPD spectra. The TPD spectra after electrochemical O2− pumping to the Pd catalyst film show two peaks (at 350 and 430 °C) corresponding to spillover Oads and \( O^{{\delta - }}_{{\rm ads}} \) according to the reaction:
$$ O^{{2 - }}_{{\rm (YSZ)}} \to {\text{O}}^{{\delta - }}_{{{\text{ads}}}} \to {\text{O}}_{{{\text{ads}}}} $$

The formation of the spillover \( O^{{\delta - }}_{{\rm ads}} \) oxygen species is an intermediate stage before the formation of the atomic adsorbed oxygen, Oads. Mixed gaseous and electrochemical adsorption was carried out in order to simulate the Electrochemical Promotion conditions. The initial surface coverage with oxygen from the gas phase plays a very important role on the high or low effect of polarization. In general mixed adsorption leads to much higher oxygen coverages compare with that observed either under gaseous or electrochemical adsorption. The binding strength of the atomic adsorbed oxygen (state β2) was investigated as a function of applied potential. It was found that the binding energy decreases linearly with increasing catalyst potential and work function. Similar behavior has been observed for oxygen adsorption on Pt, Ag and Au deposited on YSZ in previous studies.


Temperature programmed desorption Oxygen adsorption on Pd Electrochemical promotion Electrochemical adsorption Palladium supported catalyst Spillover-backspillover of oxygen NEMCA effect 



The author would like to thank Professor Costas Vayenas from University of Patras for helpful discussions and his support, friendship and trust during the last 10 years. I am also very thankful to Professor George Karatzas and especially to my reviewers for their very thorough review and numerous very helpful suggestions.


  1. 1.
    Ertl G, Rau P (1969) Surf Sci 15:443CrossRefGoogle Scholar
  2. 2.
    Ertl G, Kueppers J (1970) Surf Sci 21:61CrossRefGoogle Scholar
  3. 3.
    Conrad H, Ertl G, Kueppers J, Latta EE (1977) Surf Sci 65:245CrossRefGoogle Scholar
  4. 4.
    Conrad H, Ertl G, Kueppers J (1978) Surf Sci 76:323CrossRefGoogle Scholar
  5. 5.
    Matsushima T (1985) Surf Sci 157:85CrossRefGoogle Scholar
  6. 6.
    Guo X, Hoffman A, Yates JT (1989) J Phys Chem 90:5787CrossRefGoogle Scholar
  7. 7.
    Weissman DL, Shek ML, Spicer WE (1980) Surf Sci 92:L59CrossRefGoogle Scholar
  8. 8.
    Imbihl R, Demuth JE (1986) Surf Sci 173:395CrossRefGoogle Scholar
  9. 9.
    Zheng G, Altman EI (2000) Surf Sci 462:151CrossRefGoogle Scholar
  10. 10.
    Voogt EH, Mens AJM, Gijzeman OLJ, Geus JW (1997) Surf Sci 373:219CrossRefGoogle Scholar
  11. 11.
    Stuve EM, Madix RJ, Brundle CR (1984) Surf Sci 146:155CrossRefGoogle Scholar
  12. 12.
    Chang SL, Thiel PA (1988) J Phys Chem 88:2071CrossRefGoogle Scholar
  13. 13.
    Klier K, Wang YN, Simmons GW (1993) Surf Sci 97:633Google Scholar
  14. 14.
    He JW, Norton PR (1988) Surf Sci 204:26CrossRefGoogle Scholar
  15. 15.
    He JW, Memmert U, Norton PR (1989) J Phys Chem 90:5088CrossRefGoogle Scholar
  16. 16.
    Bondzie VA, Kleban P, Dwyer DJ (1986) Surf Sci 347:395Google Scholar
  17. 17.
    Milun M, Pervan P, Vajic M (1989) Surf Sci 211/212:887CrossRefGoogle Scholar
  18. 18.
    Yagi K, Sekiba D, Fukutani H (1999) Surf Sci 442:307CrossRefGoogle Scholar
  19. 19.
    Campbell CT, Foyt DC, White JM (1977) J Phys Chem 81:491CrossRefGoogle Scholar
  20. 20.
    Putna ES, Vohs JM, Gorte RJ (1997) Surf Sci 391:L1178CrossRefGoogle Scholar
  21. 21.
    Xu X, Goodman DW (1993) J Phys Chem 97:7711CrossRefGoogle Scholar
  22. 22.
    Lintz HG, Vayenas CG (1989) Angewandte Chemie Intern Ed in Engl 28:708CrossRefGoogle Scholar
  23. 23.
    Vayenas CG, Bebelis S, Neophytides S, Yentekakis IV (1989) Appl Phys A 49:95CrossRefGoogle Scholar
  24. 24.
    Nicole J, Tsiplakides D, Pliangos G, Verykios XE, Comninellis C, Vayenas CG (2001) J Catal 204:23CrossRefGoogle Scholar
  25. 25.
    Vayenas CG, Bebelis S, Neophytides S (1988) J Phys Chem 92:5083CrossRefGoogle Scholar
  26. 26.
    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625CrossRefGoogle Scholar
  27. 27.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  28. 28.
    Vayenas CG, Jaksic MM, Bebelis S, Neophytides SG (1996) In: Bockris JOM, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol. 29. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  29. 29.
    Frantzis AD, Bebelis S, Vayenas CG (2000) Solid State Ionics 136–137:863CrossRefGoogle Scholar
  30. 30.
    Giannikos A, Frantzis AD, Pliangos C, Bebelis S, Vayenas CG (1998) Ionics 4:53CrossRefGoogle Scholar
  31. 31.
    Politova TI, Sobyanin VA, Belyaev VD (1990) React Kinet Catal Lett 41:321CrossRefGoogle Scholar
  32. 32.
    Basini L, Cavalca CA, Haller GL (1994) J Phys Chem 98:10853CrossRefGoogle Scholar
  33. 33.
    Harkness I, Lambert RM (1995) J Catal 152:211CrossRefGoogle Scholar
  34. 34.
    Chiang PH, Eng D, Stoukides M (1993) J Catal 139:683CrossRefGoogle Scholar
  35. 35.
    Constantinou I, Bolzonella I, Pliangos C, Comninellis C, Vayenas CG (2005) Catal Lett 100:125CrossRefGoogle Scholar
  36. 36.
    Cavalca CA, Haller GL (1998) J Catal 177:389CrossRefGoogle Scholar
  37. 37.
    Palermo A, Tikhov MS, Filkin NC, Lambert RM, Yentekakis IV, Vayenas CG (1996) Stud Surf Sci Catal 101:513CrossRefGoogle Scholar
  38. 38.
    Cavalca C, Larsen G, Vayenas CG, Haller G (1993) J Phys Chem 97:6115CrossRefGoogle Scholar
  39. 39.
    Vayenas CG, Michaels J (1982) Surf Sci 120:L405CrossRefGoogle Scholar
  40. 40.
    Vayenas CG, Debeneddi PG, Yentekakis Y, Hegedus LL (1985) Ind & Eng Chem Fund 24:316CrossRefGoogle Scholar
  41. 41.
    Pliangos C, Yentekakis IV, Ladas S, Vayenas CG (1996) J Catal 159:189CrossRefGoogle Scholar
  42. 42.
    Neophytides S, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1994) Nature 370:292CrossRefGoogle Scholar
  43. 43.
    Balomenou S, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Comninellis C, Vayenas CG (2004) Appl Catal B: Environ 52:181CrossRefGoogle Scholar
  44. 44.
    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Foti G, Comninellis C, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Solid State Ionics 177:2201CrossRefGoogle Scholar
  45. 45.
    Grzybowska-Swierkosz B, Haber J (1994) Annual reports on the progress of chemistry. The Royal Society of Chemistry, CambridgeGoogle Scholar
  46. 46.
    Pritchard J (1990) Nature 343:592CrossRefGoogle Scholar
  47. 47.
    Bockris JOM , Minevski ZS (1974) Electrochim Acta 39:1471CrossRefGoogle Scholar
  48. 48.
    Yiokari K, Bebelis S (2000) J Appl Electrochem 30:1277CrossRefGoogle Scholar
  49. 49.
    Marwood M, Vayenas CG (1997) J Catal 170:275CrossRefGoogle Scholar
  50. 50.
    Luerssen B, Gόnther S, Marbach H, Kiskinova M, Janek J, Imbihl R (2000) Chem Phys Lett 316:331CrossRefGoogle Scholar
  51. 51.
    Makri M, Vayenas CG, Bebelis S, Besocke KH, Cavalca C (1996) Surf Sci 369:351CrossRefGoogle Scholar
  52. 52.
    Vayenas CG, Archonta D, Tsiplakides D (2003) J Electroanal Chem 554–555:301CrossRefGoogle Scholar
  53. 53.
    Archonta D, Frantzis A, Tsiplakides D, Vayenas CG (2006) Solid State Ionics 177:2221CrossRefGoogle Scholar
  54. 54.
    Ladas S, Kennou S, Bebelis S, Vayenas CG (1993) J Phys Chem 97:8845CrossRefGoogle Scholar
  55. 55.
    Kondarides DI, Papatheodorou GN, Vayenas VG, Verykios XE (1993) Berichte Bunsengesellschaft der Physikalischen Chemie 97:709Google Scholar
  56. 56.
    Neophytides S, Tsiplakides D, Vayenas CG (1998) J Catal 178:414CrossRefGoogle Scholar
  57. 57.
    Tsiplakides D, Vayenas CG (1999) J Catal 185:237CrossRefGoogle Scholar
  58. 58.
    Stoukides M, Vayenas CG (1984) J Electrochem Soc 131:839CrossRefGoogle Scholar
  59. 59.
    Neophytides SG, Vayenas CG (1995) J Phys Chem 99:17063CrossRefGoogle Scholar
  60. 60.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 222:192CrossRefGoogle Scholar
  61. 61.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 226:197CrossRefGoogle Scholar
  62. 62.
    Zipprich W, Wiemhφfer H-D, Vöhrer U, Göpel W (1995) Berichte Bunsengesellschaft der Physikalischen Chemie 99:1406Google Scholar
  63. 63.
    Ladas S, Bebelis S, Vayenas CG (1991) Surf Sci 251/252:1062CrossRefGoogle Scholar
  64. 64.
    Nicole J, Tsiplakides D, Wodiunig S, Comninellis C (1997) J Electrochem Soc 144:L312CrossRefGoogle Scholar
  65. 65.
    Anderson JR (1975) Structure of metallic catalysts. Academic Press, LondonGoogle Scholar
  66. 66.
    Bebelis S, Vayenas CG (1992) J Catal 138:570CrossRefGoogle Scholar
  67. 67.
    Falconer JL, Madix RJ (1975) Surf Sci 48:393CrossRefGoogle Scholar
  68. 68.
    Ibach H, Erley W, Wagner H (1980) Surf Sci 92:29CrossRefGoogle Scholar
  69. 69.
    Habenshaden E, Kueppers J (1984) Surf Sci 138:L147CrossRefGoogle Scholar
  70. 70.
    Hoffman A, Guo X, Yates JT, Gadzuk JW, Clark CW (1989) J Phys Chem 90:5793CrossRefGoogle Scholar
  71. 71.
    Goschnick J, Wolf M, Grunze M, Unertl WN, Block JH, Loboda-Cackovic J (1986) Surf Sci 178:831CrossRefGoogle Scholar
  72. 72.
    Leisenberger FP, Koller G, Sock M, Surnev S, Ramsey MG, Netzer FP, Kloetzer B, Hayek K (2000) Surf Sci 445:380CrossRefGoogle Scholar
  73. 73.
    Kloetzer B, Hayek K, Konvicka C, Lundgren E, Varga P (2001) Surf Sci 482–485:237CrossRefGoogle Scholar
  74. 74.
    Tysoe WT, Nyberg GL, Lambert RM (1984) J Phys Chem 88:1960CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Environmental EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations