Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temperature programmed desorption of oxygen from Pd films interfaced with Y2O3-doped ZrO2

  • 151 Accesses

  • 2 Citations

Abstract

The origin of the effect of non-faradaic electrochemical modification of catalytic activity (NEMCA) or Electrochemical Promotion was investigated via temperature-programmed-desorption (TPD) of oxygen, from polycrystalline Pd films deposited on 8 mol%Y2O3–stabilized–ZrO2 (YSZ), an O2− conductor, under high-vacuum conditions and temperatures between 50 and 250 °C. Oxygen was adsorbed both via the gas phase and electrochemically, as O2−, via electrical current application between the Pd catalyst film and a Au counter electrode. Gaseous oxygen adsorption gives two adsorbed atomic oxygen species desorbing at about 300 °C (state β1) and 340–500 °C (state β2). The creation of the low temperature peak is favored at high exposure times (exposure >1 kL) and low adsorption temperatures (Tads < 200 °C). The decrease of the open circuit potential (or catalyst work function) during the adsorption at high exposure times, indicates the formation of subsurface oxygen species which desorbs at higher temperatures (above 450 °C). The desorption peak of this subsurface oxygen is not clear due to the wide peaks of the TPD spectra. The TPD spectra after electrochemical O2− pumping to the Pd catalyst film show two peaks (at 350 and 430 °C) corresponding to spillover Oads and \( O^{{\delta - }}_{{\rm ads}} \) according to the reaction:

$$ O^{{2 - }}_{{\rm (YSZ)}} \to {\text{O}}^{{\delta - }}_{{{\text{ads}}}} \to {\text{O}}_{{{\text{ads}}}} $$

The formation of the spillover \( O^{{\delta - }}_{{\rm ads}} \) oxygen species is an intermediate stage before the formation of the atomic adsorbed oxygen, Oads. Mixed gaseous and electrochemical adsorption was carried out in order to simulate the Electrochemical Promotion conditions. The initial surface coverage with oxygen from the gas phase plays a very important role on the high or low effect of polarization. In general mixed adsorption leads to much higher oxygen coverages compare with that observed either under gaseous or electrochemical adsorption. The binding strength of the atomic adsorbed oxygen (state β2) was investigated as a function of applied potential. It was found that the binding energy decreases linearly with increasing catalyst potential and work function. Similar behavior has been observed for oxygen adsorption on Pt, Ag and Au deposited on YSZ in previous studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Ertl G, Rau P (1969) Surf Sci 15:443

  2. 2.

    Ertl G, Kueppers J (1970) Surf Sci 21:61

  3. 3.

    Conrad H, Ertl G, Kueppers J, Latta EE (1977) Surf Sci 65:245

  4. 4.

    Conrad H, Ertl G, Kueppers J (1978) Surf Sci 76:323

  5. 5.

    Matsushima T (1985) Surf Sci 157:85

  6. 6.

    Guo X, Hoffman A, Yates JT (1989) J Phys Chem 90:5787

  7. 7.

    Weissman DL, Shek ML, Spicer WE (1980) Surf Sci 92:L59

  8. 8.

    Imbihl R, Demuth JE (1986) Surf Sci 173:395

  9. 9.

    Zheng G, Altman EI (2000) Surf Sci 462:151

  10. 10.

    Voogt EH, Mens AJM, Gijzeman OLJ, Geus JW (1997) Surf Sci 373:219

  11. 11.

    Stuve EM, Madix RJ, Brundle CR (1984) Surf Sci 146:155

  12. 12.

    Chang SL, Thiel PA (1988) J Phys Chem 88:2071

  13. 13.

    Klier K, Wang YN, Simmons GW (1993) Surf Sci 97:633

  14. 14.

    He JW, Norton PR (1988) Surf Sci 204:26

  15. 15.

    He JW, Memmert U, Norton PR (1989) J Phys Chem 90:5088

  16. 16.

    Bondzie VA, Kleban P, Dwyer DJ (1986) Surf Sci 347:395

  17. 17.

    Milun M, Pervan P, Vajic M (1989) Surf Sci 211/212:887

  18. 18.

    Yagi K, Sekiba D, Fukutani H (1999) Surf Sci 442:307

  19. 19.

    Campbell CT, Foyt DC, White JM (1977) J Phys Chem 81:491

  20. 20.

    Putna ES, Vohs JM, Gorte RJ (1997) Surf Sci 391:L1178

  21. 21.

    Xu X, Goodman DW (1993) J Phys Chem 97:7711

  22. 22.

    Lintz HG, Vayenas CG (1989) Angewandte Chemie Intern Ed in Engl 28:708

  23. 23.

    Vayenas CG, Bebelis S, Neophytides S, Yentekakis IV (1989) Appl Phys A 49:95

  24. 24.

    Nicole J, Tsiplakides D, Pliangos G, Verykios XE, Comninellis C, Vayenas CG (2001) J Catal 204:23

  25. 25.

    Vayenas CG, Bebelis S, Neophytides S (1988) J Phys Chem 92:5083

  26. 26.

    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625

  27. 27.

    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer Academic/Plenum Publishers, New York

  28. 28.

    Vayenas CG, Jaksic MM, Bebelis S, Neophytides SG (1996) In: Bockris JOM, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol. 29. Kluwer Academic/Plenum Publishers, New York

  29. 29.

    Frantzis AD, Bebelis S, Vayenas CG (2000) Solid State Ionics 136–137:863

  30. 30.

    Giannikos A, Frantzis AD, Pliangos C, Bebelis S, Vayenas CG (1998) Ionics 4:53

  31. 31.

    Politova TI, Sobyanin VA, Belyaev VD (1990) React Kinet Catal Lett 41:321

  32. 32.

    Basini L, Cavalca CA, Haller GL (1994) J Phys Chem 98:10853

  33. 33.

    Harkness I, Lambert RM (1995) J Catal 152:211

  34. 34.

    Chiang PH, Eng D, Stoukides M (1993) J Catal 139:683

  35. 35.

    Constantinou I, Bolzonella I, Pliangos C, Comninellis C, Vayenas CG (2005) Catal Lett 100:125

  36. 36.

    Cavalca CA, Haller GL (1998) J Catal 177:389

  37. 37.

    Palermo A, Tikhov MS, Filkin NC, Lambert RM, Yentekakis IV, Vayenas CG (1996) Stud Surf Sci Catal 101:513

  38. 38.

    Cavalca C, Larsen G, Vayenas CG, Haller G (1993) J Phys Chem 97:6115

  39. 39.

    Vayenas CG, Michaels J (1982) Surf Sci 120:L405

  40. 40.

    Vayenas CG, Debeneddi PG, Yentekakis Y, Hegedus LL (1985) Ind & Eng Chem Fund 24:316

  41. 41.

    Pliangos C, Yentekakis IV, Ladas S, Vayenas CG (1996) J Catal 159:189

  42. 42.

    Neophytides S, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1994) Nature 370:292

  43. 43.

    Balomenou S, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Comninellis C, Vayenas CG (2004) Appl Catal B: Environ 52:181

  44. 44.

    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Foti G, Comninellis C, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Solid State Ionics 177:2201

  45. 45.

    Grzybowska-Swierkosz B, Haber J (1994) Annual reports on the progress of chemistry. The Royal Society of Chemistry, Cambridge

  46. 46.

    Pritchard J (1990) Nature 343:592

  47. 47.

    Bockris JOM , Minevski ZS (1974) Electrochim Acta 39:1471

  48. 48.

    Yiokari K, Bebelis S (2000) J Appl Electrochem 30:1277

  49. 49.

    Marwood M, Vayenas CG (1997) J Catal 170:275

  50. 50.

    Luerssen B, Gόnther S, Marbach H, Kiskinova M, Janek J, Imbihl R (2000) Chem Phys Lett 316:331

  51. 51.

    Makri M, Vayenas CG, Bebelis S, Besocke KH, Cavalca C (1996) Surf Sci 369:351

  52. 52.

    Vayenas CG, Archonta D, Tsiplakides D (2003) J Electroanal Chem 554–555:301

  53. 53.

    Archonta D, Frantzis A, Tsiplakides D, Vayenas CG (2006) Solid State Ionics 177:2221

  54. 54.

    Ladas S, Kennou S, Bebelis S, Vayenas CG (1993) J Phys Chem 97:8845

  55. 55.

    Kondarides DI, Papatheodorou GN, Vayenas VG, Verykios XE (1993) Berichte Bunsengesellschaft der Physikalischen Chemie 97:709

  56. 56.

    Neophytides S, Tsiplakides D, Vayenas CG (1998) J Catal 178:414

  57. 57.

    Tsiplakides D, Vayenas CG (1999) J Catal 185:237

  58. 58.

    Stoukides M, Vayenas CG (1984) J Electrochem Soc 131:839

  59. 59.

    Neophytides SG, Vayenas CG (1995) J Phys Chem 99:17063

  60. 60.

    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 222:192

  61. 61.

    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 226:197

  62. 62.

    Zipprich W, Wiemhφfer H-D, Vöhrer U, Göpel W (1995) Berichte Bunsengesellschaft der Physikalischen Chemie 99:1406

  63. 63.

    Ladas S, Bebelis S, Vayenas CG (1991) Surf Sci 251/252:1062

  64. 64.

    Nicole J, Tsiplakides D, Wodiunig S, Comninellis C (1997) J Electrochem Soc 144:L312

  65. 65.

    Anderson JR (1975) Structure of metallic catalysts. Academic Press, London

  66. 66.

    Bebelis S, Vayenas CG (1992) J Catal 138:570

  67. 67.

    Falconer JL, Madix RJ (1975) Surf Sci 48:393

  68. 68.

    Ibach H, Erley W, Wagner H (1980) Surf Sci 92:29

  69. 69.

    Habenshaden E, Kueppers J (1984) Surf Sci 138:L147

  70. 70.

    Hoffman A, Guo X, Yates JT, Gadzuk JW, Clark CW (1989) J Phys Chem 90:5793

  71. 71.

    Goschnick J, Wolf M, Grunze M, Unertl WN, Block JH, Loboda-Cackovic J (1986) Surf Sci 178:831

  72. 72.

    Leisenberger FP, Koller G, Sock M, Surnev S, Ramsey MG, Netzer FP, Kloetzer B, Hayek K (2000) Surf Sci 445:380

  73. 73.

    Kloetzer B, Hayek K, Konvicka C, Lundgren E, Varga P (2001) Surf Sci 482–485:237

  74. 74.

    Tysoe WT, Nyberg GL, Lambert RM (1984) J Phys Chem 88:1960

Download references

Acknowledgements

The author would like to thank Professor Costas Vayenas from University of Patras for helpful discussions and his support, friendship and trust during the last 10 years. I am also very thankful to Professor George Karatzas and especially to my reviewers for their very thorough review and numerous very helpful suggestions.

Author information

Correspondence to A. Katsaounis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katsaounis, A. Temperature programmed desorption of oxygen from Pd films interfaced with Y2O3-doped ZrO2 . J Appl Electrochem 38, 1097 (2008). https://doi.org/10.1007/s10800-008-9562-y

Download citation

Keywords

  • Temperature programmed desorption
  • Oxygen adsorption on Pd
  • Electrochemical promotion
  • Electrochemical adsorption
  • Palladium supported catalyst
  • Spillover-backspillover of oxygen
  • NEMCA effect