Skip to main content
Log in

Stability of the electrodeposition process for CoPt alloy formation

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The stability of the process for electrodeposition of CoPt alloys from ammonium citrate electrolytes containing [Pt(NO2)2(NH3)2]0 as the source of Pt was studied. Voltammetric monitoring of the anodic oxidation of the electrolyte and deposition of CoPt on the cathode showed the effect of the changes of the nature of the Pt complex on the performance of the plating bath. Anodic oxidation of the Pt complex was shown to involve mainly the oxidation of \(\hbox{NO}_2^-\) and to some extent NH3 ligands. The cathodic process is accompanied by reduction of free \(\hbox{NO}_2^-.\) The reduction of this anion in the bound form is highly inhibited. In contrast, its oxidation at the anode proceeds almost as readily in the bound form as that in the free form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chin Ts-Sh (2000) J Magn Magn Mater 209:75

    Article  Google Scholar 

  2. Myung NV, Park D-Y, Yoo B-Y, Sumodjo PTA (2003) J Magn Magn Mater 265:189

    Article  Google Scholar 

  3. Xiao QF, Bruck E, Zhang ZD, de Boer FR, Buschow KHJ (2002) J Appl Phys 91:304

    Article  Google Scholar 

  4. Fujita N, Maeda S, Yoshida S, Takase M, Nakano M, Fukunaga H (2004) J Magn Magn Mater 272–276:e1895

    Article  Google Scholar 

  5. Wang F, Hosoiri K, Doi S, Okamoto N, Kuzushima T, Totsuka T, Watanabe T (2004) Electrochem Commun 6:1149

    Article  Google Scholar 

  6. Bozzini B, De Vita D, Sportoletti A, Zangari G, Cavallotti PL, Terrenzio E (1993) J Magn Magn Mater 120:300

    Article  CAS  Google Scholar 

  7. Callegaro L, Puppin E, Cavallotti PL, Zangari G (1996) J Magn Magn Mater 155:190

    Article  Google Scholar 

  8. Zangari G, Bucher P, Lecis N, Cavallotti PL, Callegaro L, Puppin E (1996) J Magn Magn Mater 157/158:256

    Article  Google Scholar 

  9. Cavallotti PL, Lecis N, Fauser H, Zielonka A, Celis JP, Wouters G, Machado da Silva J, Brochado Oliveira JM, Sa MA (1998) Surf Coat Technol 105:232

    Article  Google Scholar 

  10. Zana Iu, Zangari G (2003) Electrochem Solid-state Lett 6(12):C153

    Article  Google Scholar 

  11. Zana Iu, Zangari G (2004) J Magn Magn Mater 272–276:1698

    Article  Google Scholar 

  12. Franz S, Cavallotti PL, Bestetti M, Sirtori V, Lombardi L (2004) J Magn Magn Mater 272–276:2430

    Article  Google Scholar 

  13. Zana Iu, Zangari G, Shamsuzzoha M (2004) J Electrochem Soc 151(10):C637

    Article  Google Scholar 

  14. Ghidini M, Zangari G, Prejbeanu IL, Pattanaik G, Buda-Prejbeanu LD, Asti G, Pernechele C, Solzi M (2006) J Appl Phys 100:103911

    Article  Google Scholar 

  15. Pattanaik G, Kirkwood DM, Xu X, Zangari G (2007) Electrochim Acta 52:2755

    Article  Google Scholar 

  16. Xu X, Weston J, Zangari G (2007) J Appl Phys 101:09K520

    Article  Google Scholar 

  17. Eagleton TS, Mallet J, Cheng X, Wang J, Chien C-L, Season PC (2005) J Appl Phys 152(1):C27

    Google Scholar 

  18. Kulkarni S, Roy S (2007) J Appl Phys 101:09K524

    Article  Google Scholar 

  19. Berkh O, Rosenberg Yu, Shacham-Diamand Y, Gileadi E (2007) Microelectron Eng 84:2444

    Article  CAS  Google Scholar 

  20. Le Penven R, Levason W, Pletcher D (1992) J Appl Electrochem 22:415

    Article  CAS  Google Scholar 

  21. Gregory AJ, Levason W, Pletcher D (1993) J Electroanal Chem 348:211

    Article  CAS  Google Scholar 

  22. Gregory AJ, Levason W, Noftle RE, Penven RLe, Pletcher D (1995) J Electroanal Chem 399:105

    Article  Google Scholar 

  23. Basirun WJ, Pletcher D, Saraby-Reintjes A (1996) J Appl Electrochem 26:873

    Article  Google Scholar 

  24. Levason W, Pletcher D, Smith AM, Berzins AR (1998) J Appl Electrochem 28:18

    Article  Google Scholar 

  25. Baumgarten ME, Raub ChJ (1988) Platinum Met Rev 32:188

    Google Scholar 

  26. Skinner BE (1989) Platinum Met Rev 33:102

    CAS  Google Scholar 

  27. Pushpavanam M (2006) J Appl Electrochem 36:1069

    Article  Google Scholar 

  28. Rao CRK, Trivedi DC (2005) Coord Chem Rev 249:613

    Article  Google Scholar 

  29. Donten M, Osteryoung J (1991) J Appl Electrochem 21:496

    Article  CAS  Google Scholar 

  30. Cortona MN, Vettorazzi NR, Silber JJ, Serano LE (1999) J Electroanal Chem 470:157

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Office of the Chief Scientist, Israel Ministry of Trade and Industry. One of us (O. B.) wishes to thank the “KAMEA” program of the Israeli Ministry of Absorption for support in the course of this project

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gileadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkh, O., Shacham-Diamand, Y. & Gileadi, E. Stability of the electrodeposition process for CoPt alloy formation. J Appl Electrochem 38, 1275–1283 (2008). https://doi.org/10.1007/s10800-008-9553-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9553-z

Keywords

Navigation