Journal of Applied Electrochemistry

, Volume 38, Issue 8, pp 1159–1170 | Cite as

Electrochemical promotion of NO reduction by C2H4 in 10% O2 using a monolithic electropromoted reactor with Rh/YSZ/Pt elements

  • S. Souentie
  • A. Hammad
  • S. Brosda
  • G. Foti
  • C. G. Vayenas
Original Paper


The reduction of NO by C2H4 in high excess of O2 and temperatures 200−300 °C was investigated using a monolithic electropromoted reactor (MEPR) with twenty-two Rh/YSZ/Pt parallel plate elements. It was found that at 220–240 °C and 10% O2 the selective catalytic reduction (SCR) of NO can be electropromoted by 450% with near 100% selectivity to N2 and ΛNO values up to 2.4. The corresponding rate enhancement ratio of complete C2H4 oxidation is up to 900% with Faradaic efficiency, \( \Uplambda _{{{\text{CO}}_{2} }} \), values up to 350. The system appears promising for practical applications.


Electrochemical promotion NEMCA effect NO reduction Ethylene reductant Monolithic electropromoted reactor Selective catalytic reduction (SCR) of NO Rhodium electrocatalyst Platinum electrocatalyst 



We thank the AKMON programme of the General Secretariat for research and development (GSRT) for partial financial support and our reviewers for helpful comments.


  1. 1.
    Burch R, Watling TC (1997) Appl Catal B 11207:216Google Scholar
  2. 2.
    Obuchi A, Kaneko I, Oi J, Ohi A, Ogata A, Bamwenda GR, Kushiyama S (1998) Appl Catal B 15:37CrossRefGoogle Scholar
  3. 3.
    Amiridis MD, Zhang T, Farrauto RJ (1996) Appl Catal B 10:203CrossRefGoogle Scholar
  4. 4.
    Pavulescu VI, Grange P, Delmon B (1998) Catal Today 46:233CrossRefGoogle Scholar
  5. 5.
    Fritz A, Pitchon V (1997) Appl Catal B 13:1CrossRefGoogle Scholar
  6. 6.
    Halkides TI, Kondarides DI, Verykios XE (2002) Catal Today 73:213CrossRefGoogle Scholar
  7. 7.
    Kotsifa A, Halkides TI, Kondarides DI, Verykios XE (2002) Catal Lett 79:113CrossRefGoogle Scholar
  8. 8.
    Čapek L, Dĕdeček J, Wichterlová B, Cider L, Jobson E, Tokarová V (2005) Appl Catal B 60:147CrossRefGoogle Scholar
  9. 9.
    Čapek L, Novoveska K, Sobalik Z, Wichterlová B, Cider L, Jobson E (2005) Appl Catal B 60:201CrossRefGoogle Scholar
  10. 10.
    Nikopoulos AA, Stergioula ES, Efthimiadis EA, Vasalos IA (1999) Catal Today 54:439CrossRefGoogle Scholar
  11. 11.
    Vernoux P, Leinekugel-Le-Cocq AY, Gaillard F (2003) J Catal 219:247CrossRefGoogle Scholar
  12. 12.
    Yentekakis I, Tellou V, Botzolaki G, Rapakousios I (2005) Appl Catal B 56:229CrossRefGoogle Scholar
  13. 13.
    Joubert E, Courtois X, Marecot P, Canaff C, Duprez D (2006) J Catal 243:252CrossRefGoogle Scholar
  14. 14.
    Chen LF, Gonzalez G, Wang JA, Norena LE, Toledo A, Castillo S, Moran-Pineda M (2005) Appl Surf Sci 243:319CrossRefGoogle Scholar
  15. 15.
    Wang X, Xu Y, Yu S, Yang C (2005) Catal Lett 103:101CrossRefGoogle Scholar
  16. 16.
    Lintz HG, Vayenas CG (1989) Angew Chem Int Ed Engl 28(6):708CrossRefGoogle Scholar
  17. 17.
    Vayenas CG, Bebelis S, Neophytides S, Yentekakis IV (1989) Appl Phys A 49:95CrossRefGoogle Scholar
  18. 18.
    Stoukides M, Vayenas CG (1981) J Catal 70:137CrossRefGoogle Scholar
  19. 19.
    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625CrossRefGoogle Scholar
  20. 20.
    Lambert RM, Williams F, Palermo A, Tikhov MS (2000) Top Catal 13:91CrossRefGoogle Scholar
  21. 21.
    Foti G, Wodiunig S, Comninellis C (2000) Curr Top Electrochem 7:1Google Scholar
  22. 22.
    Cavalca CA, Haller GL (1998) J Catal 177:389CrossRefGoogle Scholar
  23. 23.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) In: Electrochemical activation of catalysis: promotion, electrochemical promotion and metal–support interactions. Kluwer Academic/Plenum Publishers, New York, references thereinGoogle Scholar
  24. 24.
    Vernoux P, Gaillard F, Karoum R, Billard A (2007) Appl Catal B 73:73CrossRefGoogle Scholar
  25. 25.
    Marwood M, Kaloyannis A, Vayenas CG (1996) Ionics 2:302CrossRefGoogle Scholar
  26. 26.
    Marwood M, Vayenas CG (1997) J Catal 170:275CrossRefGoogle Scholar
  27. 27.
    Kim S, Haller GH (2000) Solid State Ionics 136(137):693CrossRefGoogle Scholar
  28. 28.
    Beguin B, Gaillard F, Primet M, Vernoux P, Bultel L, Henault M, Roux C, Siebert E (2002) Ionics 8:128CrossRefGoogle Scholar
  29. 29.
    Foti G, Lavanchy O, Comninellis Ch (2000) J Appl Electrochem 30:1223CrossRefGoogle Scholar
  30. 30.
    Pliangos C, Raptis C, Badas Th, Vayenas CG (2000) Ionics 6:119CrossRefGoogle Scholar
  31. 31.
    Pliangos C, Raptis C, Badas Th, Vayenas CG (2000) Solid State Ionics 136(137):767CrossRefGoogle Scholar
  32. 32.
    Pliangos C, Raptis C, Badas Th, Tsiplakides D, Vayenas CG (2000) Electrochim Acta 46:331CrossRefGoogle Scholar
  33. 33.
    Williams FJ, Macleod N, Tikhov MS, Lambert RM (2002) Electrochim Acta 47:1259CrossRefGoogle Scholar
  34. 34.
    Balomenou SP, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Comninellis Ch, Vayenas CG (2004) Appl Catal B 52:181CrossRefGoogle Scholar
  35. 35.
    Tsiplakides D, Balomenou S, Katsaounis A, Archonta D, Koutsodontis C, Vayenas CG (2005) Catal Today 100:133CrossRefGoogle Scholar
  36. 36.
    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Foti G, Comninellis Ch, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Solid State Ionics 171:2201CrossRefGoogle Scholar
  37. 37.
    Balomenou S, Tsiplakides D, Vayenas CG, Poulston S, Houel V, Collier P, Konstandopoulos A, Agrafiotis Ch (2007) Top Catal 44(3):481CrossRefGoogle Scholar
  38. 38.
    Koutsodontis C, Hammad A, Lepage M, Sakamoto Y, Fóti G, Vayenas CG (2008) Top Catal (in press)Google Scholar
  39. 39.
    Constantinou I, Archonta D, Brosda S, Lepage M, Sakamoto Y, Vayenas CG (2007) J Catal 251:400CrossRefGoogle Scholar
  40. 40.
    Goula G, Katzourakis P, Vakakis N, Papadam T, Konsolakis M, Tikhov M, Yentekakis IV (2007) Catal Today 127:199CrossRefGoogle Scholar
  41. 41.
    Harkness IR, Lambert RM (1995) J Catal 152:211CrossRefGoogle Scholar
  42. 42.
    Palermo A, Lambert RM, Harkness IR, Yentekakis I, Marina O, Vayenas CG (1996) J Catal 161:471CrossRefGoogle Scholar
  43. 43.
    Marina OA, Yentekakis IV, Vayenas CG, Palermo A, Lambert RM (1997) J Catal 166:218CrossRefGoogle Scholar
  44. 44.
    Yentekakis IV, Palermo A, Filkin NC, Tikhov MS, Lambert RM (1997) J Phys Chem B 101:3759CrossRefGoogle Scholar
  45. 45.
    Dorado F, de Lucas-Consuegra A, Jimenez C, Valverde JL (2007) Appl Catal A 321:86CrossRefGoogle Scholar
  46. 46.
    Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Appl Catal B 73:42CrossRefGoogle Scholar
  47. 47.
    Lambert RM, Palermo A, Williams FJ, Tikhov MS (2000) Solid State Ionics 136(137):677CrossRefGoogle Scholar
  48. 48.
    Williams FJ, Tikhov MS, Palermo A, Maclead N, Lambert RM (2001) J Phys Chem B 105:2800CrossRefGoogle Scholar
  49. 49.
    Williams FJ, Palermo A, Tikhov MS, Lambert RM (2001) Surf Sci 482(485):177CrossRefGoogle Scholar
  50. 50.
    Vernoux P, Gaillard F, Lopez C, Siebert E (2003) J Catal 217:203Google Scholar
  51. 51.
    Tomita A, Yoshii T, Teranishi S, Nagao M, Hibino T (2007) J Catal 247:137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Souentie
    • 1
  • A. Hammad
    • 1
  • S. Brosda
    • 1
  • G. Foti
    • 2
  • C. G. Vayenas
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations