Skip to main content
Log in

A disposable sensor based on immobilization of acetylcholinesterase to multiwall carbon nanotube modified screen-printed electrode for determination of carbaryl

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A simple method has been devised for immobilization of acetylcholinesterase (AChE) covalent bonding to a multiwall carbon nanotube (MWNT)-cross-linked cellulose acetate composite on a screen-printed carbon electrode (SPCE) and a sensitive and disposable amperometric sensor for rapid determination of carbaryl pesticide is proposed. The immobilized enzyme was preserved on this film because of the excellent biocompatibility and non-toxicity of cellulose acetate. Based on the inherent conductive properties of the MWNT, the immobilized AChE had greater affinity for ATCl and excellent catalytic effect in the hydrolysis of ATCl. MWNT improved the interface enzymatic hydrolysis reaction and increased the amperometric response of the sensor. Under optimum conditions, the inhibition of carbaryl on AChE increased linearly with the increasing concentration of carbaryl in two ranges, from 0.01 to 0.5 μg mL−1 and from 2 to 20 μg mL−1, with the correlation coefficients of 0.9985 and 0.9977, respectively. The detection limit was 0.004 μg mL−1 taken as the concentration equivalent to 10% decrease in signal. The sensor showed acceptable stability, accuracy and could be fabricated in batches, thus it is economic and portable. This type of disposable enzyme-based amperometric sensor has extensive application potential in environmental monitoring of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jury WA, Winer AM, Spencer WF, Focht DD (1987) Rev Environ Contam T 99:119

    CAS  Google Scholar 

  2. Carloa MD, Mascinib M, Pepea A, Dilettic G, Compagnone D (2004) Food Chem 84:651

    Article  Google Scholar 

  3. Lacassie E, Dreyfuss MF, Daguet JL, Vignaud M, Marquet P, Lach G (1998) J Chromatogr A 805:319

    Article  CAS  Google Scholar 

  4. Gou Y, Eisert R, Pawliszyn J (2000) J Chromatogr A 873:137

    Article  CAS  Google Scholar 

  5. Uchiyama S, Tomita R, Sekioka N, Imaizumi E, Hamana H, Hagiwara T (2006) Bioelectrochemistry 68:119

    Article  Google Scholar 

  6. Garjonyte R, Melvydas V, Malinauskas A (2006) Bioelectrochemistry 68:191

    Article  CAS  Google Scholar 

  7. Kandimalla VB, Ju HX (2005) Chem-Eur J 12:1074

    Article  Google Scholar 

  8. Schulze H, Vorlová S, Villatte F, Bachmann TT, Chmid RD (2003) Biosens Bioelectron 18:201

    Article  Google Scholar 

  9. Bonnet C, Andreescu S, Marty JL (2003) Anal Chim Acta 481:209

    Article  Google Scholar 

  10. Haccoun J, Piro B, Noël V, Pham MC (2006) Bioelectrochemistry 68:218

    Article  CAS  Google Scholar 

  11. Lanyon YH, Marrazza G, Tothill IE, Mascini M (2005) Biosens Bioelectron 20:2089

    Article  Google Scholar 

  12. Rauf S, Ihsan A, Akhtar K, Ghauri MA, Rahman M, Anwar MA, Khalid AM (2006) J Biotechnol 121:351

    Article  CAS  Google Scholar 

  13. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105

    Article  Google Scholar 

  14. Miscoria SA, Barrera GD, Rivas GA (2006) Sens Actuator B Chem 115:205

    Article  Google Scholar 

  15. Halloran MPO, Pravda M, Guilbault GG (2001) Talanta 55:605

    Article  Google Scholar 

  16. Susmel S, Guilbault GG, O’Sullivan CK (2003) Biosens Bioelectron 18:881

    Article  CAS  Google Scholar 

  17. Wang J, Pamidi PVA, Rogers KR (1998) Anal Chem 70:1171

    Article  CAS  Google Scholar 

  18. Yu H, Yan F, Dai Z, Ju HX (2004) Anal Biochem 331:98

    Google Scholar 

  19. Neuhold GG, Wang J, Cai X, Kalcher K (1995) Analyst 120:2377

    Article  Google Scholar 

  20. Ye YK, Ju HX (2005) Biosens Bioelectron 21:735

    Article  Google Scholar 

  21. Tsang SC, Chen YK, Harris PJF, Green MLH (1994) Nature 372:159

    Article  Google Scholar 

  22. Liu GD, Lin YH (2005) Electrochem Commun 7:339

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support of the National Natural Science Foundation of China (No. 20705010) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20070511015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Du, D. A disposable sensor based on immobilization of acetylcholinesterase to multiwall carbon nanotube modified screen-printed electrode for determination of carbaryl. J Appl Electrochem 38, 1217–1222 (2008). https://doi.org/10.1007/s10800-008-9540-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9540-4

Keywords

Navigation