Journal of Applied Electrochemistry

, Volume 38, Issue 8, pp 1171–1176 | Cite as

Tailor-structured skeletal Pt catalysts employed in a monolithic electropromoted reactor

  • A. Hammad
  • S. Souentie
  • S. Balomenou
  • D. Tsiplakides
  • J. C. Figueroa
  • C. Cavalca
  • C. J. Pereira
  • C. G. Vayenas
Original Paper

Abstract

The performance of a monolithic electropromoted reactor was investigated under high gas flow rates, for the oxidation of ethylene utilizing thin (40 nm) tailor-structured highly porous skeletal Pt catalyst-electrodes coated on Y2O3-stabilized-ZrO2 (YSZ). Electrochemical enhancement was observed at gas flow rates as high as 25 L min−1 and mean gas residence times as low as 0.15 s. This is a promising step for the practical utilization of the electrochemical promotion of catalysis. An interesting feature of the skeletal Pt catalyst-electrodes is the appearance of a sharp rate maximum upon anodic current interruption which appears to be related to their dendritic structure and enhanced capacity for promoter storage.

Keywords

Electrochemical promotion Monolithic electrochemically promoted reactor Ethylene oxidation MEPR Skeletal Pt electrodes Y2O3-stabilized-ZrO2 

References

  1. 1.
    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625CrossRefGoogle Scholar
  2. 2.
    Pritchard J (1990) Nature 343:592CrossRefGoogle Scholar
  3. 3.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  4. 4.
    Tsiplakides D, Balomenou S, Katsaounis A, Archonta D, Koutsodontis C, Vayenas CG (2005) Catal Today 100:133CrossRefGoogle Scholar
  5. 5.
    Vayenas CG, Jaksic MM, Bebelis S, Neophytides SG (1996) In: Bockris JOM, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 29. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  6. 6.
    Wieckowski A, Savinova E, Vayenas CG (eds) (2003) Catalysis and electrocatalysis at nanoparticles. Marcel Dekker, New YorkGoogle Scholar
  7. 7.
    Lambert RM, Williams F, Palermo A, Tikhov MS (2000) Top Catal 13:91CrossRefGoogle Scholar
  8. 8.
    Foti G, Wodiunig S, Comninellis C (2000) Curr Top Electrochem 7:1Google Scholar
  9. 9.
    Cavalca CA, Haller GL (1998) J Catal 177:389CrossRefGoogle Scholar
  10. 10.
    Ploense L, Salazar M, Gurau B, Smotkin ES (1997) J Am Chem Soc 119:11550CrossRefGoogle Scholar
  11. 11.
    Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) J Catal 208:412CrossRefGoogle Scholar
  12. 12.
    Metcalfe I (2001) J Catal 199:247CrossRefGoogle Scholar
  13. 13.
    Sanchez C, Leiva E (2003) In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 2. Wiley, EnglandGoogle Scholar
  14. 14.
    Vayenas CG, Bebelis S, Neophytides S, Yentekakis IV (1989) Appl Phys A-Matter 49:95CrossRefGoogle Scholar
  15. 15.
    Lintz H-G, Vayenas CG (1989) Angew Chem Int Ed 28:708CrossRefGoogle Scholar
  16. 16.
    Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis C, Vayenas CG (2001) J Catal 204:23CrossRefGoogle Scholar
  17. 17.
    Riess I, Vayenas CG (2003) Solid State Ionics 159:313CrossRefGoogle Scholar
  18. 18.
    Dorado F, Lucas-Consuegra Ad, Jimenez C, Valverde JL (2007) Appl Catal A-Gen 321:86CrossRefGoogle Scholar
  19. 19.
    Baranova EA, Thursfield A, Brosda S, Foti G, Comninellis C, Vayenas CG (2005) J Electrochem Soc 152:E40CrossRefGoogle Scholar
  20. 20.
    Balomenou S, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Conminellis C, Vayenas CG (2004) Appl Catal B-Environ 52:181CrossRefGoogle Scholar
  21. 21.
    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Foti G, Comninellis C, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Solid State Ionics 177:2199Google Scholar
  22. 22.
    Balomenou S, Tsiplakides D, Vayenas C, Poulston S, Houel V, Collier P, Konstandopoulos A, Agrafiotis C (2007) Top Catal 44:481CrossRefGoogle Scholar
  23. 23.
    Michaels JN, Vayenas CG, Hegedus LL (1986) J Electrochem Soc 133:522CrossRefGoogle Scholar
  24. 24.
    Figueroa JC, Mattson RH (1999) US Patent 5,993,979Google Scholar
  25. 25.
    Kotsionopoulos N, Bebelis S (2005) J Appl Electrochem 35:1253CrossRefGoogle Scholar
  26. 26.
    Kokkofitis C, Karagiannakis G, Zisekas S, Stoukides M (2005) J Catal 234:476CrossRefGoogle Scholar
  27. 27.
    Nicole J, Tsiplakides D, Wodiunig S, Comninellis C (1997) J Electrochem Soc 144:L312CrossRefGoogle Scholar
  28. 28.
    Jaccoud A (2007) PhD Thesis, EPFL, Lausanne, SwitzerlandGoogle Scholar
  29. 29.
    Jaccoud A, Fóti G, Comninellis C (2006) Electrochim Acta 51:1264CrossRefGoogle Scholar
  30. 30.
    Carberry JJ (1976) Chemical and catalytic reaction engineering. McGraw Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. Hammad
    • 1
  • S. Souentie
    • 1
  • S. Balomenou
    • 2
  • D. Tsiplakides
    • 2
  • J. C. Figueroa
    • 3
  • C. Cavalca
    • 3
  • C. J. Pereira
    • 3
  • C. G. Vayenas
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.CPERI/CERTHThessalonikiGreece
  3. 3.DuPont CompanyCentral Research & Development MS&EWilmingtonUSA

Personalised recommendations