Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 7, pp 997–1003 | Cite as

Electrogeneration of hydrogen peroxide in seawater and application to disinfection

  • Anna Da Pozzo
  • Elisabetta PetrucciEmail author
  • Carlo Merli
Original Paper

Abstract

The cathodic electrogeneration of hydrogen peroxide in seawater by means of oxygen reduction on a gas diffusion cathode was studied. The effects on the reaction yield of several operative parameters such as cell design, medium composition, anolyte concentration, pH and working potential were investigated. Results indicate that in a two-compartment cell notable concentrations of hydrogen peroxide are obtained with a constant yield in a wide range of charge. Lower catholyte pH values, obtainable by means of the anolyte choice, mitigate the decrease in the efficiency due to cathode fouling. Application of hydrogen peroxide electrogeneration to seawater disinfection was also tested. Comparative tests conducted using both commercial and electrogenerated hydrogen peroxide, either alone or combined with iron in Fenton’s treatment, are also presented.

Keywords

Disinfection Gas diffusion electrode Hydrogen peroxide Oxygen reduction Seawater 

Notes

Acknowledgements

The authors thank “De Nora Tecnologie Elettrochimiche” for their valuable collaboration and the materials supplied.

References

  1. 1.
    Biryukov AS, Gavrikov VF, Nikiforova LO, Shcheglov VA (2005) J Russ Laser Res 26:13CrossRefGoogle Scholar
  2. 2.
    McGuigan KG, Joyce TM, Conroy RM, Gillespie JB, Elmore-Meegan M (1998) J Appl Microbiol 84:1138CrossRefGoogle Scholar
  3. 3.
    Huang J, Wang L, Ren N, Ma F, Ma J (1997) Water Res 31:607CrossRefGoogle Scholar
  4. 4.
    White GC (1999) Handbook of chlorination and alternative disinfectants, 4th edn. Wiley, New YorkGoogle Scholar
  5. 5.
    von Gunten U (2003) Water Res 37:1443CrossRefGoogle Scholar
  6. 6.
    von Gunten U (2003) Water Res 37:1469CrossRefGoogle Scholar
  7. 7.
    Gibbons J, Laha S (1999) Environ Pollut 106:425CrossRefGoogle Scholar
  8. 8.
    Cedergren MI, Selbing AJ, Löfman O, Källen BA (2002) J Environ Res A 89:124CrossRefGoogle Scholar
  9. 9.
    Sadiq R, Rodriguez MJ (2004) Sci Total Environ 321:21CrossRefGoogle Scholar
  10. 10.
    Jyoti KK, Pandit AB (2004) Biochem Eng J 18:9CrossRefGoogle Scholar
  11. 11.
    Arnal JM, Sancho M, Verdr G, Lora J, Marin JF, Chiller J (2004) Desalination 168:265CrossRefGoogle Scholar
  12. 12.
    Blanc DS, Zanetti G, Francioli P, Carrara P (2005) J Hosp Infect 60:69CrossRefGoogle Scholar
  13. 13.
    Jyoti KK, Pandit AB (2004) Water Res 38:2248CrossRefGoogle Scholar
  14. 14.
    Sökmen M, Candan F, Sümer Z (2001) J Photochem Photobiol A 143:241CrossRefGoogle Scholar
  15. 15.
    Chen G (2004) Sep Purif Technol 38:11CrossRefGoogle Scholar
  16. 16.
    Feng C, Suzuki K, Zhao S, Sugiura N, Shimada S, Maekawa T (2004) Bioresour Technol 94:21CrossRefGoogle Scholar
  17. 17.
    Polcaro AM, Vacca A, Mascia M, Palmas S, Pompei R, Laconi S (2007) Electrochim Acta 52:2595CrossRefGoogle Scholar
  18. 18.
    Silva SM, Alvarez GA, Martìnez E (2004) Int J Hydrogen Energy 29:921CrossRefGoogle Scholar
  19. 19.
    Kraft A, Stadelmann M, Blaschke M, Kreysig D, Sandt B, Schröder F, Rennau J (1999) J Appl Electrochem 29:861Google Scholar
  20. 20.
    Drougi P, Elmaleh S, Rumeau M, Bernard C, Rambaud A (2001) Water Res 35:3235CrossRefGoogle Scholar
  21. 21.
    Alvarez GA, Pletcher D (1998) Electrochim Acta 44:853CrossRefGoogle Scholar
  22. 22.
    Brillas E, Alcaide F, Cabot PL (2002) Electrochim Acta 48:331CrossRefGoogle Scholar
  23. 23.
    Qiang Z, Chang JH, Huang CP (2002) Water Res 36:85CrossRefGoogle Scholar
  24. 24.
    Guillet N, Roué L, Marcotte S, Villers D, Dodelet JP, Chhim N, Tré Vin S (2006) J Appl Electrochem 36:863CrossRefGoogle Scholar
  25. 25.
    Alcaide F, Brillas E, Cabot PL (2002) J Electrochem Soc 149:E64CrossRefGoogle Scholar
  26. 26.
    Harrington T, Pletcher D (1999) J Electrochem Soc 146:2983CrossRefGoogle Scholar
  27. 27.
    Da Pozzo A, Palma LD, Merli C, Petrucci E (2005) J Appl Electrochem 35:413CrossRefGoogle Scholar
  28. 28.
    Oemcke DJ, van Leeuwen JH (2005) Water Res 39:5119CrossRefGoogle Scholar
  29. 29.
    Kuzirian AM, Terry ECS, Bechtel DL, James PL (2001) Biol Bull 201:297CrossRefGoogle Scholar
  30. 30.
    Da Pozzo A, Ferrantelli P, Merli C, Petrucci E (2005) J Appl Electrochem 35:391CrossRefGoogle Scholar
  31. 31.
    Brillas E, Casado J (2002) Chemosphere 47:241CrossRefGoogle Scholar
  32. 32.
    Kurt U, Avsar Y, Gonullu MT (2006) Chemosphere 64:1536CrossRefGoogle Scholar
  33. 33.
    Boye B, Brillas E, Buso A, Farnia G, Flox C, Giomo M et al (2006) Electrochim Acta 52:256CrossRefGoogle Scholar
  34. 34.
    Maciel R, Sant’Anna GL Jr, Dezotti M (2004) Chemosphere 57:711CrossRefGoogle Scholar
  35. 35.
    Gosser LW, Schwartz JT (1989) US Patent US4832938Google Scholar
  36. 36.
    Berzins T, Gosser LW (1992) US patent US5112702Google Scholar
  37. 37.
    Sudoh M, Kitaguchi H, Koide K (1985) J Chem Eng Japan 18:409CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Anna Da Pozzo
    • 1
  • Elisabetta Petrucci
    • 1
    Email author
  • Carlo Merli
    • 1
  1. 1.Department of Chemical Engineering Materials and Environment“Sapienza” University of RomeRomaItaly

Personalised recommendations