Journal of Applied Electrochemistry

, Volume 38, Issue 7, pp 939–945 | Cite as

Influence of electrode thickness on the performance of composite electrodes for SOFC

  • Antonio BarbucciEmail author
  • Mariapaola Carpanese
  • Andrea P. Reverberi
  • Giacomo Cerisola
  • Mireia Blanes
  • Pere Luis Cabot
  • Massimo Viviani
  • Antonio Bertei
  • Cristiano Nicolella
Original Paper


Measurements on half-cells consisting of yttria-stabilized zirconia (YSZ) electrolyte pellets and slurry-coated cathodes of different thickness were performed in order to determine the active area for oxygen reduction in composite cathodes of lanthanum strontium manganite (LSM) and YSZ. Electrochemical impedance spectroscopy was used to evaluate the main electrochemical parameters of the cathodic process. The temperature range was between 500 and 900 °C. The experimental results show a remarkable effect of the electrode thickness on the overall reaction rate in all the temperature range. At 750 °C a change in the controlling regime of the oxygen reduction is detectable and has been ascribed to the transition of the rate-determining step from a charge transfer to a mass transfer of the ionic species. A simplified theoretical model of the cathode that accounts for charge transfer and ionic conduction was developed to give insight into the experimental results. The model simulations compared satisfactorily with the experimental data confirming that the behaviour experimentally observed could be approached with the proposed model.


Active sites LSM/YSZ composite electrode Modelling Electrochemical measurements Solid oxide fuel cells. 



The authors gratefully acknowledge financial support of the Italian project “FISR: Nanosistemi Inorganici ed Ibridi per lo Sviluppo e l’Innovazione di Celle a Combustibile”.


  1. 1.
    Badwal SPS (2001) Solid State Ionics 143:39CrossRefGoogle Scholar
  2. 2.
    Steele BCH, Heinzel A (2001) Nature 414:345CrossRefGoogle Scholar
  3. 3.
    Singh P, Minh NQ (2004) Int J Appl Cer Technol 1(1):5CrossRefGoogle Scholar
  4. 4.
    Yuan J, Sundén B (2005) Trans of the ASME 127:1380CrossRefGoogle Scholar
  5. 5.
    Steele BCH (2000) Solid State Ionics 129:95CrossRefGoogle Scholar
  6. 6.
    Peña-Martínez J, Marrero-López D, Pérez-Coll D, Ruiz-Morales JC, Núñez P (2007) Electrochim Acta 52:2950CrossRefGoogle Scholar
  7. 7.
    Brichzin V, Fleig J, Habermeier H-U, Maier J (2000) Electroch Sol St Lett 3(9):403CrossRefGoogle Scholar
  8. 8.
    Radhakrishnan R, Virkar AV, Singhal SC (2005) J Electroch Soc 152:A210CrossRefGoogle Scholar
  9. 9.
    Fleig J, Maier J (2004) J Europ Cer Soc 24:1343CrossRefGoogle Scholar
  10. 10.
    Schneider LCR, Martin CL, Bultel Y, Dessemond L, Bouvard D (2007) Electrochim Acta 52:3190CrossRefGoogle Scholar
  11. 11.
    Adler SB (2004) Chem Rev 104:4791CrossRefGoogle Scholar
  12. 12.
    Barbucci A, Carpanese P, Cerisola G, Viviani M (2005) Solid State Ionics 176:1753CrossRefGoogle Scholar
  13. 13.
    Winkler J, Hendriksen PV, Bonanos N, Mogensen M (1998) J Electrochem Soc 145(4):1184Google Scholar
  14. 14.
    Macdonald JR (1987) Impedance spectroscopy. John Wiley & Sons, New York, Inc. p 214Google Scholar
  15. 15.
    Dusastre V, Kilner JA (1999) Solid State Ionics 126:163CrossRefGoogle Scholar
  16. 16.
    Tanner CW, Fung KZ, Virkar AV (1997) J Electrochemical Soc 144:21CrossRefGoogle Scholar
  17. 17.
    Chen XJ, Chan SH, Khor KA (2004) Electrochim Acta 49:1851CrossRefGoogle Scholar
  18. 18.
    Carpanese MP (2003) Thesis, University of GenovaGoogle Scholar
  19. 19.
    Barbucci A, Carpanese P, Cerisola G, Viviani M, Nicolella C (2007) Electrochim. Acta submittedGoogle Scholar
  20. 20.
    Yi JY, Choi GM (2002) Solid State Ionics 148:557CrossRefGoogle Scholar
  21. 21.
    Li Y, Kilner JA, Carolan MF (2005) Solid State Ionics 176:937CrossRefGoogle Scholar
  22. 22.
    Bouvard D, Lange FF (1991) Acta Metall Mater 39(12):3083CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Antonio Barbucci
    • 1
    • 2
    Email author
  • Mariapaola Carpanese
    • 1
    • 2
  • Andrea P. Reverberi
    • 1
    • 2
  • Giacomo Cerisola
    • 1
    • 2
  • Mireia Blanes
    • 3
  • Pere Luis Cabot
    • 3
  • Massimo Viviani
    • 2
    • 4
  • Antonio Bertei
    • 5
  • Cristiano Nicolella
    • 5
  1. 1.Dipartimento di Ingegneria Chimica e ProcessoUniversità di GenovaGenovaItaly
  2. 2.Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei MaterialiFirenzeItaly
  3. 3.Departament de Química Física, Facultat de QuímicaUniversitat de BarcelonaBarcelona Spain
  4. 4.Istituto per l’Energetica e le InterfasiCNRGenovaItaly
  5. 5.Dipartimento di Ingegneria ChimicaUniversità di PisaPisaItaly

Personalised recommendations