Journal of Applied Electrochemistry

, Volume 38, Issue 7, pp 923–929 | Cite as

Anodic oxidation of mecoprop herbicide at lead dioxide

  • Marco PanizzaEmail author
  • Ignasi Sirés
  • Glacomo Cerisola
Original Paper


The electrochemical oxidation of an aqueous solution containing mecoprop (2-(2-methyl-4-chlorophenoxy)propionic acid) has been studied at PbO2 anodes by cyclic voltammetry and bulk electrolysis. The influence of current density, hydrodynamic conditions, temperature and pH on the degradation rate and current efficiency is reported. The results obtained show that the use of PbO2 leads to total mineralization of mecoprop due to the production of oxidant hydroxyl radical electrogenerated from water discharge. The current efficiency for the electro-oxidation of mecoprop is enhanced by low current density, high recycle flow-rates and high temperature. In contrast, the pH effect was not significant. It has also been observed that mecoprop decay kinetics follows a pseudo-first-order reaction and the rate constant increases with rising current density.


Lead dioxide anode Electrochemical oxidation Mecoprop Herbicides 



I.S. acknowledges the support from the members of the Laboratorio di Elettrochimica, Corrosione e Protezione dei Materiali Metallici of the Università degli Studi di Genova to draw up this paper.


  1. 1.
    Barbash JE, Thelin GP, Kolpin DW, Gilliom RJ (2001) J Environ Qual 30:831–845CrossRefGoogle Scholar
  2. 2.
    Kim T-Y, Kim S-J, Cho S-Y (2005) Adsorption 11:217–221CrossRefGoogle Scholar
  3. 3.
    Bonne PAC, Beerendonk EF, van der Hoek JP, Hofman JAMH (2000) Desalination 132:189–193CrossRefGoogle Scholar
  4. 4.
    Acero JL, Benitez FJ, Real FJ, Maya C (2003) Ind Eng Chem Res 42:5762–5769CrossRefGoogle Scholar
  5. 5.
    Acero JL, Real FJ, Benitez J, Gonzalez M (2007) J Chem Technol Biotechnol 82:214–222CrossRefGoogle Scholar
  6. 6.
    Benitez FJ, Acero JL, Real FJ, Roman S (2004) J Environ Sci Health B 39:393–409CrossRefGoogle Scholar
  7. 7.
    Rivas FJ, Navarrete V, Beltrán FJ, García-Araya JF (2004) Appl Catal B: Environ 48:249–258CrossRefGoogle Scholar
  8. 8.
    Konstantinou IK, Sakkas VA, Albanis TA (2001) Appl Catal B: Environ 34:227–239CrossRefGoogle Scholar
  9. 9.
    Badellino C, Rodrigues CA, Bertazzoli R (2007) J Appl Electrochem 37:451–459CrossRefGoogle Scholar
  10. 10.
    Badellino C, Rodrigues CA, Bertazzoli R (2006) J Hazard Mater 137:856–864CrossRefGoogle Scholar
  11. 11.
    Boye B, Dieng MM, Brillas E (2002) Environ Sci Technol 36:3030–3035CrossRefGoogle Scholar
  12. 12.
    Oturan MA (2000) J Appl Electrochem 30:475–482CrossRefGoogle Scholar
  13. 13.
    Brillas E, Boye B, Dieng MM (2003) J Electrochem Soc 150:583–589CrossRefGoogle Scholar
  14. 14.
    Brillas E, Baños MA, Garrido JA (2003) Electrochim Acta 48:1697–1705CrossRefGoogle Scholar
  15. 15.
    Brillas E, Baños MA, Skoumal M, Cabot PL, Garrido JA, Rodríguez RM (2007) Chemosphere 68:199–209CrossRefGoogle Scholar
  16. 16.
    Brillas E, Boye B, Sirés I, Garrido JA, Rodríguez RM, Arias C, Cabot PL, Comninellis C (2004) Electrochim Acta 49:4487–4496CrossRefGoogle Scholar
  17. 17.
    Sirés I, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2006) Electrochim Acta 52:75–85CrossRefGoogle Scholar
  18. 18.
    Comninellis C (1994) Electrochim Acta 39:1857–1862CrossRefGoogle Scholar
  19. 19.
    Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A (1999) J Electrochem Soc 146:2175–2179CrossRefGoogle Scholar
  20. 20.
    Polcaro AM, Palmas S, Renoldi F, Mascia M (2000) Electrochim Acta 46:389–394CrossRefGoogle Scholar
  21. 21.
    Awad YM, Abuzaid NS (1999) Sep Sci Technol 34:699–708CrossRefGoogle Scholar
  22. 22.
    Foti G, Gandini D, Comninellis C, Perret A, Haenni W (1999) Electrochem Solid State Lett 2:228–230CrossRefGoogle Scholar
  23. 23.
    Pulgarin C, Adler N, Peringer P, Comninellis C (1994) Water Res 28:887–893CrossRefGoogle Scholar
  24. 24.
    Panizza M, Cerisola G (2005) Electrochim Acta 51:191–199CrossRefGoogle Scholar
  25. 25.
    Iniesta J, Michaud PA, Panizza M, Cerisola G, Aldaz A, Comninellis C (2001) Electrochim Acta 46:3573–3578CrossRefGoogle Scholar
  26. 26.
    Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis C (2001) J Electrochem Soc 148:D60-D64CrossRefGoogle Scholar
  27. 27.
    Cañizares P, Díaz M, Domínguez JA, García-Gómez J, Rodrigo MA (2002) Ind Eng Chem Res 41:4187–4194CrossRefGoogle Scholar
  28. 28.
    Cañizares P, García-Gómez J, Sáez C, Rodrigo MA (2003) J Appl Electrochem 33:917–927CrossRefGoogle Scholar
  29. 29.
    Panizza M, Michaud PA, Cerisola G, Comninellis C (2001) J Electroanal Chem 507:206CrossRefGoogle Scholar
  30. 30.
    Gandini D, Mahé E, Michaud PA, Haenni W, Perret A, Comninellis C (2000) J Appl Electrochem 30:1345–1350CrossRefGoogle Scholar
  31. 31.
    Cañizares P, García-Gómez J, Lobato J, Rodrigo MA (2003) Ind Eng Chem Res 42:956–962CrossRefGoogle Scholar
  32. 32.
    Mitadera M, Spataru N, Fujishima A (2004) J Appl Electrochem 34:249–254CrossRefGoogle Scholar
  33. 33.
    Polcaro AM, Mascia M, Palmas S, Vacca A (2004) Electrochim Acta 49:649–656CrossRefGoogle Scholar
  34. 34.
    Sirés I, Centellas F, Garrido JA, Rodríguez RM, Arias C, Cabot PL, Brillas E (2007) Appl Catal B: Environ 72:373–381CrossRefGoogle Scholar
  35. 35.
    Boye B, Brillas E, Marselli B, Michaud P-A, Comninellis C, Farnia G, Sandona G (2006) Electrochim Acta 51:2872–2880CrossRefGoogle Scholar
  36. 36.
    Flox C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2006) Chemosphere 64:892–902CrossRefGoogle Scholar
  37. 37.
    Panizza M, Cerisola G (2004) Environ Sci Technol 38:5470–5475CrossRefGoogle Scholar
  38. 38.
    Polcaro AM, Palmas S, Renoldi F, Mascia M (1999) J Appl Electrochem 29:147–151CrossRefGoogle Scholar
  39. 39.
    Kawagoe KT, Johnson DC (1994) J Electrochem Soc 141:3404–3409CrossRefGoogle Scholar
  40. 40.
    Tahar NB, Savall A (1999) J Appl Electrochem 29:277–283CrossRefGoogle Scholar
  41. 41.
    Tahar NB, Savall A (1998) J Electrochem Soc 145:3427–3434CrossRefGoogle Scholar
  42. 42.
    Abaci S, Tamer U, Pekmez K, Yildiz A (2005) Appl Surf Sci 240:112–119CrossRefGoogle Scholar
  43. 43.
    Andrade LS, Ruotolo LAM, Rocha-Filho RC, Bocchi N, Biaggio SR, Iniesta J, García-García V, Montiel V (2007) Chemosphere 66:2035–2043CrossRefGoogle Scholar
  44. 44.
    Treimer SE, Feng JR, Scholten MD, Johnson DC, Davenport AJ (2001) J Electrochem Soc 148:E459CrossRefGoogle Scholar
  45. 45.
    Velichenko AB, Amadelli R, Baranova EA, Girenko DV, Danilov FI (2002) J Electroanal Chem 527:56–64CrossRefGoogle Scholar
  46. 46.
    Thomson WT (1982) Agricultural chemicals book II herbicides. Thomson Publications, FresnoGoogle Scholar
  47. 47.
    Panizza M, Cerisola G (2003) Electrochim Acta 48:3491–3497CrossRefGoogle Scholar
  48. 48.
    Rodgers JD, Jedral W, Bunce NJ (1999) Environ Sci Technol 33:1453–1457CrossRefGoogle Scholar
  49. 49.
    Cong Y, Wu Z (2007) J Phys Chem C 111:3442–3446CrossRefGoogle Scholar
  50. 50.
    Ai S, Wang Q, Li H, Jin L (2005) J Electroanal Chem 578:223–229CrossRefGoogle Scholar
  51. 51.
    Kirk DW, Sharifian H, Foulkes FR (1985) J Appl Electrochem 15:285–292CrossRefGoogle Scholar
  52. 52.
    Samet Y, Elaoud SC, Ammar S, Abdelhedi R (2006) J Hazard Mater 138:614–619CrossRefGoogle Scholar
  53. 53.
    Amadelli R, De Battisti A, Girenko DV, Kovalyov SV, Velichenko AB (2000) Electrochim Acta 46:341–347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Marco Panizza
    • 1
    Email author
  • Ignasi Sirés
    • 1
  • Glacomo Cerisola
    • 1
  1. 1.Department of Chemical and Process EngineeringUniversity of GenoaGenoaItaly

Personalised recommendations