Journal of Applied Electrochemistry

, Volume 38, Issue 5, pp 669–677 | Cite as

Structure and properties of electrodeposited Ni–Co–YZA composite coatings

  • Meenu Srivastava
  • V. K. William Grips
  • K. S. Rajam
Original Paper

Abstract

The aim is to develop an economical composite coating with high thermal stability. Ni–Co alloys are found to possess better thermal, physical and mechanical properties compared to Ni. Also, oxide particles as distributed phase can impart better thermal stability. Hence, particulates of composite Yttria stabilised zirconia, a commonly used high temperature material and alumina (YZA) were reinforced in various Ni–Co alloy matrices through electrodeposition. The influence of YZA on the microhardness, tribology and corrosion behaviour of Ni–Co alloys with Co contents of 0 wt.%, 17 wt.%, 38 wt.% and 85 wt.% was evaluated. Optical and Scanning Electron Microscopy (SEM) confirmed the presence of YZA particles and Energy Dispersive X-ray Analysis (EDX) revealed the composition. Tribology testing showed that composite containing 38 wt.% Co displayed better wear resistance. It was found from the immersion corrosion studies that Ni–17Co–YZA coating displayed improved corrosion resistance. Thermal stability studies showed that Ni–85Co–YZA coating retained its microhardness at temperatures of 600 °C. Thus, these coatings can be tailored for various applications by varying the cobalt content.

Keywords

Ni–Co Composite Yttria stabilised zirconia/alumina (YZA) Wear Immersion corrosion Thermal stability 

References

  1. 1.
    Thoma M (1985) 4th international tribology symposium–eurotrib 85, LyonGoogle Scholar
  2. 2.
    Greco VP, Baldauf W (1968) Plating 250Google Scholar
  3. 3.
    Pushpavanam M, Varadajan G, Krishnamurthy S, Shenoi BA (1974) Electroplat Met Finish 10Google Scholar
  4. 4.
    Celis JP, Roos JR (1982) Coat Corros 5:1Google Scholar
  5. 5.
    Brooman EW (2006) J Appl Surf Finish 1:38Google Scholar
  6. 6.
    Kuo S-L (2005) J Chin Inst Eng 28:1Google Scholar
  7. 7.
    Nowak P, Socha RP, Kaisheva M et al (2000) J Appl Electrochem 30:429CrossRefGoogle Scholar
  8. 8.
    Wang S-C, Wei W-CJ (2003) J Mater Res 18:7Google Scholar
  9. 9.
    Shawki S, Abdel Hamid Z (1997) Aircr Eng Aerosp Technol 69:432CrossRefGoogle Scholar
  10. 10.
    Socha RP, Nowak P, Laajalehto K, Vayrynen J (2004) Colloids Surf A: Physicochem Eng Aspects 235:45CrossRefGoogle Scholar
  11. 11.
    Lampke Th, Leopold A, Dietrich D et al (2006) Surf Coat Technol 201:3510CrossRefGoogle Scholar
  12. 12.
    Qu NS, Zhu D, Chan KC (2006) Scr Mater 54:1421CrossRefGoogle Scholar
  13. 13.
    Xue Y-J, Li J-S, Ma W et al (2006) J Mater Sci 41:1781Google Scholar
  14. 14.
    Benea L, Lakatos-Varsanyi M, Maurin G (II-2003) The Annals of Dunarea De Jos University of Galati, Fascicle IX Metallurgy and Materials Science, ISSN 1453-083X NRGoogle Scholar
  15. 15.
    Moller A, Hahn H (1999) Nanostruct Mater 12:259CrossRefGoogle Scholar
  16. 16.
    Hou F, Wang W, Guo H (2006) Appl Surf Sci 252:3812Google Scholar
  17. 17.
    Wang W, Hou F-Y, Wang H, Guo H-T (2005) Scr Mater 53:613Google Scholar
  18. 18.
    Wang W, Guo HT, Gao JP et al (2000) J Mater Sci 35:1495CrossRefGoogle Scholar
  19. 19.
    Rajiv EP, Annamalai VE, Seshadri SK (1992) J Mater Sci Lett 11:466CrossRefGoogle Scholar
  20. 20.
    Balathandan S, Annamalai VE, Seshadri SK (1992) J Mater Sci Lett 11:449CrossRefGoogle Scholar
  21. 21.
    Jun L, Yiyong W, Dianlong W, Xinguo H (2000) J Mater Sci 35:1751Google Scholar
  22. 22.
    Aruna ST, Rajam KS (2003) Scr Mater 48:507CrossRefGoogle Scholar
  23. 23.
    Choi SR, Bansal NP (2005) Ceram Int 31:39CrossRefGoogle Scholar
  24. 24.
    Sharif AA, Mecartney ML (2004) J Eur Ceram Soc 24:2041CrossRefGoogle Scholar
  25. 25.
    Mangalaraja RV, Chandrasekhar BK, Manohar P (2003) Mater Sci Eng A 343:71CrossRefGoogle Scholar
  26. 26.
    Lu XJ, Xiao P (2007) J Eur Ceram Soc 27:2613CrossRefGoogle Scholar
  27. 27.
    Dini JW, Johnson HR, Helms JR (1972) Sandia livermore laboratories report No. SCL-DR-720090Google Scholar
  28. 28.
    Safranek WH (1974) The properties of electrodeposited metals and alloys—a handbook. American Elsevier Publishing Company, IncGoogle Scholar
  29. 29.
    Wang L, Gao Y, Xue Q, Liu H, Xu T (2005) Appl Surf Sci 242:326Google Scholar
  30. 30.
    Vicenzo A, Cavallotti PL (2004) Electrochim Acta 49:4079CrossRefGoogle Scholar
  31. 31.
    Brenner A (1963) Electrodeposition of alloys—principles and practice, vol II. Academic Press NYGoogle Scholar
  32. 32.
    Golodnitsky D, Gudin NV, Volyanuk GA (1998) Plat Surf Finish 2:65Google Scholar
  33. 33.
    Malone GA, Winkelman M (1989) High performance alloy electroforming final report No. 8874-927001Google Scholar
  34. 34.
    Golodnitsky D, Gudin NV, Volyanuk GA (2000) J Electrochem Soc 147:4156CrossRefGoogle Scholar
  35. 35.
    Golodnitsky D, Rosenberg Yu, Ulus A (2002) Electrochim Acta 47:2707CrossRefGoogle Scholar
  36. 36.
    Fan CL, Piron DL (1996) Electrochim Acta 41:10:1713CrossRefGoogle Scholar
  37. 37.
    Qiao G, Jing T, Wang N et al (2005) Electrochim Acta 51:85Google Scholar
  38. 38.
    Wu BYC, Ferreira PJ, Schuh CA (2005) Metall Mater Trans A 36A:1927CrossRefGoogle Scholar
  39. 39.
    Bai A, Hu C-C (2002) Electrochim Acta 47:3447CrossRefGoogle Scholar
  40. 40.
    Srivastava M, Ezhil Selvi V, William Grips VK, Rajam KS (2006) Surf Coat Technol 201:3051CrossRefGoogle Scholar
  41. 41.
    Klug H, Alexander L (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. John Wiley, New YorkGoogle Scholar
  42. 42.
    Srivastava M, William Grips VK, Rajam KS (2007) Appl Surf Sci 253:3814CrossRefGoogle Scholar
  43. 43.
    Archard JF (1953) J Appl Phys 24:981CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Wearmouth WR (1982) Trans Inst Metal Finish 60:68Google Scholar
  46. 46.
    Walter RJ (1986) Plat Surf Finish 48Google Scholar
  47. 47.
    Srinivasan D, Chattopadhayay K (2004) Mater Sci Eng A 375:1228CrossRefGoogle Scholar
  48. 48.
    Zimmerman AF, Palumbo G, Aust KT, Erb U (2002) Mater Sci Eng A 328:137CrossRefGoogle Scholar
  49. 49.
    Ni W, Cheng Y-T, Lukitsch MJ et al (2004) Appl Phys Lett 85:4028Google Scholar
  50. 50.
    Windisch CF Jr, Ferris KF, Exarhos GF (2001) J Vac Sci Technol A 19Google Scholar
  51. 51.
    Simionato M, Moreira Assaf E (2003) Mater Res 6:535Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Meenu Srivastava
    • 1
  • V. K. William Grips
    • 1
  • K. S. Rajam
    • 1
  1. 1.Surface Engineering DivisionNational Aerospace LaboratoriesBangaloreIndia

Personalised recommendations