Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 2, pp 225–229 | Cite as

EIS investigation of passive film formation on mild steel in oxalic acid solution

  • A. Ashrafi
  • M. A. GolozarEmail author
  • S. Mallakpour
Original Paper

Abstract

The properties of oxide films on mild steel formed anodically in aqueous solution containing oxalic acid were investigated by means of electrochemical impedance spectroscopy (EIS). The morphology of the passive layers at different stages of film formation was investigated using scanning electron microscopy (SEM). Passivation of mild steel in oxalic acid solution is a multi-stage process that occurs before passive layer breakdown. The influence of potential on the electrochemical behavior of the passive layer was also investigated. Depending on the passive layer potential, the EIS spectra obtained exhibited a one- or two-time constant system. This suggests the formation of either a one layer or two layer oxide film on the mild steel surface, depending on the passivation potential.

Keywords

Electrochemical impedance spectroscopy Oxalic acid Passive layer 

Notes

Acknowledgements

The authors thank the Vice Chancellor for Research and Center of Graduate Studies, Isfahan University of Technology for financial support. Editing of the manuscript by Mrs Chris Abachi and Mr Gaetano Giglione is greatly appreciated.

References

  1. 1.
    Ahmad N, Macdiarmid AG (1996) Synth Met 78:103CrossRefGoogle Scholar
  2. 2.
    Su W, Iroh JO (1997) J Appl Polym Sci 65:417CrossRefGoogle Scholar
  3. 3.
    Schirmeisen M, Beck F (1989) J Appl Electrochem 19:401CrossRefGoogle Scholar
  4. 4.
    Sazou D, Georgoios C (1997) J Electroanal Chem 429:81CrossRefGoogle Scholar
  5. 5.
    Su W, Iroh JO (1997) J Appl Polym Sci 65:617CrossRefGoogle Scholar
  6. 6.
    Ashrafi A, Golozar MA, Mallakpour S (2003) Iran Polym J 12:485Google Scholar
  7. 7.
    Martyak NM, MeAndrew P, McCaskie JE, Dijon J (2002) Prog Org Coat 45:23CrossRefGoogle Scholar
  8. 8.
    Su W, Iroh JO (1999) Electrochim Acta 44:3321CrossRefGoogle Scholar
  9. 9.
    Su W, Iroh JO (1999) Electrochim Acta 44:4655CrossRefGoogle Scholar
  10. 10.
    Camalet JL, Lacroix JC, Aeiyach S, Chane-Ching K, Lacaze PC (1996) J Electroanal Chem 416:179CrossRefGoogle Scholar
  11. 11.
    Guo XP, Imaizumi H, Katoh K (1995) J Electroanal Chem 383:99CrossRefGoogle Scholar
  12. 12.
    Guo XP, Tomoe Y, Imaizumi H, Katoh K (1998) J Electroanal Chem 445:95CrossRefGoogle Scholar
  13. 13.
    Klyuev AL, Rotenberg ZA, Batrakov VV (2005) Russ J Electrochem 41:87CrossRefGoogle Scholar
  14. 14.
    Hamadov L, Kadri A, Benbrahim W (2005) Appl Surf Sci 252:1510CrossRefGoogle Scholar
  15. 15.
    Saltykov SN, Makarov GV, Toroptseva EL, Filatova YB (2004) Prot Met 40:56CrossRefGoogle Scholar
  16. 16.
    Saltykov SN, Makarov GV, Toroptseva EL (2002) Prot Met 37:163CrossRefGoogle Scholar
  17. 17.
    Mansfeld F, Kendig MW (1985) J Electrochem Soc 132:290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations