Journal of Applied Electrochemistry

, Volume 37, Issue 11, pp 1219–1226 | Cite as

Activity and long-term stability of PEDOT as Pt catalyst support for the DMFC anode

Original Paper

Abstract

The feasibility of using poly(3,4-ethylenedioxythiophene) (PEDOT) as Pt catalyst support for direct methanol fuel cell (DMFC) anodes was investigated. Measurements with freshly prepared Pt-PEDOT/C electrodes showed poor activity for methanol oxidation in a half-cell and a DMFC. A substantial enhancement in that activity was evident after either electrochemical over-oxidation of PEDOT or long-time storage of the Pt-PEDOT/C gas diffusion electrode (GDE) in air. Both procedures led to a reorganization and increase in porosity of the reaction layer, which obviously contributed to better methanol accessibility to Pt catalyst active centres. The effects of electrochemical activation and long-time storage in air on the morphology and elementary composition of the Pt-PEDOT layer were investigated by means of Hg porosimetry and SEM/EDAX. It was found that the increase in porosity was due to degradation of PEDOT characterized by a significant depletion of sulphur and oxygen in the conducting polymer matrix.

Keywords

Catalyst support Conducting polymer DMFC Over-oxidation PEDOT 

References

  1. 1.
    Shirakawa H, Lewis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 16:578–580CrossRefGoogle Scholar
  2. 2.
    MacDiarmid AG (2001) Angew Chem 113:2649–2659CrossRefGoogle Scholar
  3. 3.
    Feast WJ, Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW (1996) Polymer 37(22):5017–5047CrossRefGoogle Scholar
  4. 4.
    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12(7):481–494CrossRefGoogle Scholar
  5. 5.
    Kirchmeyer S, Reuter K (2005) J Mater Chem 15:2077–2088CrossRefGoogle Scholar
  6. 6.
    An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Leez YH (2002) J Electrochem Soc 149(8):A1058–A1062CrossRefGoogle Scholar
  7. 7.
    Wang J, Xu Y, Chen X, Du X (2007) J Power Sources 163:1120–1125CrossRefGoogle Scholar
  8. 8.
    Pickup P, Kean CL, Lefebvre MC, Li G, Qi Z, Shan J (2000) J New Mat Electrochem Syst 3:21–26Google Scholar
  9. 9.
    Jüttner K, Mangold K-M, Lange M, Bouzek K (2004) Russ J Electrochem 40(3):317–325CrossRefGoogle Scholar
  10. 10.
    Laborde H, Léger J-M, Lamy C (1994) J Appl Electrochem 24:219–226, 1019–1027Google Scholar
  11. 11.
    Shan J, Pickup PG (2000) Electrochim Acta 46:119–125CrossRefGoogle Scholar
  12. 12.
    Shen M, Roy S, Scott K, Higgins SJ, Rajapakse G (2005) Prog Nat Sci 15(1 Suppl 1):89–97CrossRefGoogle Scholar
  13. 13.
    Drillet J-F, Ee A, Friedemann J, Kötz R, Schnyder B, Schmidt VM (2002) Electrochim Acta 47(12):1983–1988CrossRefGoogle Scholar
  14. 14.
    Yang H, Coutanceau C, Léger J-M, Alonso-Vante N, Lamy C (2005) J Electroanal Chem 576:305–313CrossRefGoogle Scholar
  15. 15.
    Li L, Drillet J-F, Dittmeyer R, Jüttner K (2006) Russ J Electrochem 42(11):1193–1201CrossRefGoogle Scholar
  16. 16.
    Rajesh B, Ravindranathan Thampi K, Bonard JM, Mathieu HJ, Xanthopoulos N, Viswanathand B (2004) Electrochem Solid State Lett 7(11):A404–A407CrossRefGoogle Scholar
  17. 17.
    Drillet J-F, Dittmeyer R, Jüttner K, Li L, Mangold K-M (2006) Fuel Cells 06(6):432–438CrossRefGoogle Scholar
  18. 18.
    Pud AA (1994) Synth Metals 66:1–18CrossRefGoogle Scholar
  19. 19.
    Ren X, Springer TE, Zawodzinski TA, Gottesfeld S (2000) J Electrochem Soc 147(2):466–474CrossRefGoogle Scholar
  20. 20.
    Lefebvre MC, Qi Z, Pickup PG (1999) J Electrochem Soc 146(6):2054–2058CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.DECHEMA e.V., Karl-Winnacker-InstitutFrankfurt a. M.Germany

Personalised recommendations