Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 1, pp 31–37 | Cite as

Optimization of Ti/SnO2–Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater

  • Richard J. Watts
  • Megan S. Wyeth
  • Dennis D. Finn
  • Amy L. Teel
Original Paper

Abstract

The preparation of antimony-doped tin oxide anodes on a titanium substrate (Ti/SnO2–Sb2O5 anodes) by dipping in a solution of tin chloride and antimony chloride and annealing at high temperatures was optimized for the potential applications of drinking water disinfection, wastewater effluent disinfection, and industrial waste stream treatment. The effectiveness of Ti/SnO2–Sb2O5 anodes prepared under different conditions was evaluated by using hexanol as a probe molecule to measure the extent of oxidative reactions, and anode performance was monitored by cyclic voltammetry. A large factorial matrix consisting of tin chloride concentration × antimony chloride concentration × annealing temperature was first evaluated, and the optimum conditions were found to be 20% tin chloride and 1% antimony chloride in the dip solution and an annealing temperature of 500°C. Further investigation showed that the rate of withdrawal from the dip solution, the number of coatings of the dip solution, and the addition of oxygen during annealing did not significantly affect anode performance. Under optimum preparation conditions, Ti/SnO2–Sb2O5 anodes showed no loss of performance over 1,280 cycles of cyclic voltammetry, suggesting that their performance can be sustained over long periods of use. The result of this research is a simple preparation method for effective and long-lived Ti/SnO2–Sb2O5 anodes; this method could be easily adopted by a utility for pilot- or full-scale disinfection of water and wastewater and the treatment of industrial waste streams.

Keywords

Anode preparation Tin oxide anodes Drinking water disinfection Electrochemical disinfection Industrial waste treatment Wastewater effluent disinfection 

Notes

Acknowledgment

This work was supported by Grant No. 02-CTS-6 from the Water Environment Research Foundation.

References

  1. 1.
    Lane S, Lloyd D (2002) Crit Rev Microbiol 28:123CrossRefGoogle Scholar
  2. 2.
    Boorman G, Dellarco V, Dunnick JK, Chapin RE, Hunter S, Hauchman F, Gardner H, Cox M, Sills RC (1999) Environ Health Perspect 107:207CrossRefGoogle Scholar
  3. 3.
    Hwang BF, Jaakkola JJK (2003) Arch Environ Health 58:83CrossRefGoogle Scholar
  4. 4.
    White GC (1998) Handbook of chlorination and alternative disinfectants, 4th edn. Wiley, New York, pp 1592Google Scholar
  5. 5.
    Masschelein WJ, Rice RG (2002) Ultraviolet light in water and wastewater sanitation. CRC, Boca Raton, pp 192Google Scholar
  6. 6.
    Patermarakis G, Fountoukidis E (1990) Water Res 24:1491CrossRefGoogle Scholar
  7. 7.
    Matsunaga T, Nakasono S, Takamuku T, Burgess JG, Nakamura N, Sode K (1992) Appl Environ Microbiol 58:686Google Scholar
  8. 8.
    Sadamura H, Kobayashi S, Honda S, Suzuki N, Kogure M, Hamashima H, Kanzaki Y (2000) Electrochem 68:321Google Scholar
  9. 9.
    Okochi M, Matsunaga T (1997) Electrochim Acta 42:3247CrossRefGoogle Scholar
  10. 10.
    Matsunaga T, Okochi M, Takahashi M, Nakayama T, Wake H, Nakamura N (2000) Water Res 34:3117CrossRefGoogle Scholar
  11. 11.
    Drees KP, Abbaszadegan M, Maier RM (2003) Water Res 37:2291CrossRefGoogle Scholar
  12. 12.
    Kerwick MI, Reddy SM, Chamberlain AHL, Holt DM (2005) Electrochim Acta 50:5270CrossRefGoogle Scholar
  13. 13.
    Li XY, Ding F, Lo PSY, Sin SHP (2002) J Environ Eng 128:697CrossRefGoogle Scholar
  14. 14.
    Feng CP, Suzuki K, Zhao SY, Sugiura N, Shimada S, Maekawa T (2004) Bioresource Technol 94:21CrossRefGoogle Scholar
  15. 15.
    Bergmann H, Koparal S (2005) Electrochim Acta 50:5218CrossRefGoogle Scholar
  16. 16.
    Liang WY, Qu JH, Chen LB, Liu HJ, Lei PJ (2005) Environ Sci Technol 39:4633CrossRefGoogle Scholar
  17. 17.
    Furuta T, Tanaka H, Nishiki Y, Pupunat L, Haenni W, Rychen P (2004) Diamond Relat Mater 13:2016CrossRefGoogle Scholar
  18. 18.
    Troster I, Schafer L, Fryda M, Matthee T (2004) Water Sci Technol 49:207Google Scholar
  19. 19.
    Li XY, Diao HF, Fan FXJ, Gu JD, Ding F, Tong ASF (2004) J Environ Eng 130:1217CrossRefGoogle Scholar
  20. 20.
    Jeong J, Kim JY, Yoon J (2006) Environ Sci Technol 40:6117CrossRefGoogle Scholar
  21. 21.
    Comninellis C (1994) Electrochim Acta 39:1857CrossRefGoogle Scholar
  22. 22.
    Comninellis C, DeBattisti A (1996) J Chim Phys PCB 93:673Google Scholar
  23. 23.
    Loge FJ, Inouye T, Watts RJ (2006) Water Environ Res 78:41CrossRefGoogle Scholar
  24. 24.
    Stucki S, Kotz R, Carcer B, Suter W J (1991) App Electrochem 21:99CrossRefGoogle Scholar
  25. 25.
    Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F (1998) Environ Sci Technol 32:3570CrossRefGoogle Scholar
  26. 26.
    Kotz R, Stucki S, Carcer B (1991) J Appl Electrochem 21:14CrossRefGoogle Scholar
  27. 27.
    Comninellis C, Nerini A (1995) J Appl Electrochem 25:23CrossRefGoogle Scholar
  28. 28.
    Li XY, Cui YH, Feng YJ, Xie ZM, Gu JD (2005) Water Res 39:1972CrossRefGoogle Scholar
  29. 29.
    Borras C, Berzoy C, Mostany J, Scharifker B (2006) J Appl Electrochem 36:433CrossRefGoogle Scholar
  30. 30.
    Quiroz M, Reyna S, Sanchez J (2003) J Solid State Electrochem 7:277Google Scholar
  31. 31.
    Tanaka S, Nakata Y, Kimura T, Yustiawati M, Kawasaki M, Kuramitz H (2002) J Appl Electrochem 32:197CrossRefGoogle Scholar
  32. 32.
    Li YJ, Wang F, Zhou GD, Ni YM (2003) Chemosphere 53:1229CrossRefGoogle Scholar
  33. 33.
    Waterston K, Wang JWJ, Bejan D, Bunce NJ (2006) J Appl Electrochem 36:227CrossRefGoogle Scholar
  34. 34.
    Stucki S, Kotz R, Carcer B, Suter W (1991) J Appl Electrochem 21:99CrossRefGoogle Scholar
  35. 35.
    Correa-Lozano B, Comninellis C, DeBattisti A (1996) J Appl Electrochem 26:683Google Scholar
  36. 36.
    Grimm JH, Bessarabov DG, Simon U, Sanderson RD (2000) J Appl Electrochem 30:293CrossRefGoogle Scholar
  37. 37.
    Duverneuil P, Maury F, Pebere N, Senocq F, Vergnes H (2002) Surf Coat Technol 151:9CrossRefGoogle Scholar
  38. 38.
    Lipp L, Pletcher D (1997) Electrochim Acta 42:1091CrossRefGoogle Scholar
  39. 39.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513Google Scholar
  40. 40.
    Watts RJ, Sarasa J, Loge FJ, Teel AL (2005) J Environ Eng 131:158CrossRefGoogle Scholar
  41. 41.
    Correa-Lozano B, Comninellis C, DeBattisti A (1997) J Appl Electrochem 27:970CrossRefGoogle Scholar
  42. 42.
    Kotz R, Stucki S, Carcer B (1991) J Appl Electrochem 21:14CrossRefGoogle Scholar
  43. 43.
    Montilla F, Morallon E, Vazquez JL (2005) J Electrochem Soc 152:B421CrossRefGoogle Scholar
  44. 44.
    Chen XM, Gao FR, Chen GH (2005) J Appl Electrochem 35:185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Richard J. Watts
    • 1
  • Megan S. Wyeth
    • 1
  • Dennis D. Finn
    • 1
  • Amy L. Teel
    • 1
  1. 1.Department of Civil and Environmental EngineeringWashington State UniversityPullmanUSA

Personalised recommendations