Skip to main content
Log in

Activity of selenium modified ruthenium-electrodes and determination of the real surface area

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The determination of the surface area of Pt and Ru electrocatalyst surfaces by oxidation of adsorbed CO and by oxidation of a Cu upd layer are compared. The amount of adsorbed CO was determined mass-spectrometrically from the ionic current for CO2 formation during an oxidative potential sweep. On Ru, the Faradaic charge is too large (by approx. 55%) due to Faradaic effects (oxygen adsorption). For massive Ru electrodes a Cu upd charge of 520 μC cm−2 is found after normalization to the area determined by CO oxidation. Using this value, both methods yield identical surface areas for nanoparticulate Ru catalysts. On Ru surfaces (both massive and nanoparticulate) completely covered by Se the amount of Cu upd charge decreases to one fourth of the value observed for pure Ru. Since CO is only adsorbed on free Ru sites and not on Se covered sites, the oxidation charge for the latter can be used to determine the number of free Ru sites, whereas the decrease of the Cu upd charge on Se modified surfaces can be used to calculate the area which is modified by Se. This method, previously tested on the model electrodes, was extended to Ru nanoparticle and Ru/Se electrodes. Using this surface determination it is possible to draw conclusions about the active surface area and the Se composition of the outer shell of Ru/Se nanoparticles.

For the first time we also show, using RRDE measurements, that the oxygen reduction reaction is enhanced by simple Se adsorption also on massive Ru. It could be shown that the activity for the Ru/Se electrode increases with the Se amount on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H (2001) J Electroanal Chem 517(1–2):85

    Article  CAS  Google Scholar 

  2. Tributsch H, Bron M, Hilgendorff M, Schulenburg H, Dorbandt I, Eyert V, Bogdanoff P, Fiechter S (2001) J Appl Electrochem 31(7):739

    Article  CAS  Google Scholar 

  3. Neergat M, Leveratto D, Stimming U (2002) Fuel Cells 2(1):25

    Article  CAS  Google Scholar 

  4. Hilgendorff M, Diesner K, Schulenburg H, Bogdanoff P, Bron M, Fiechter S (2002) J New Mat Electrochem Syst 5(2):71

    CAS  Google Scholar 

  5. Leveratto D, Racz A, Savinova ER, Stimming U (2006) Fuel Cells 6(3–4):203

    Article  CAS  Google Scholar 

  6. Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI, Alonso-Vante N (2002) J Phys Chem B 106(7):1670

    Article  CAS  Google Scholar 

  7. Alonso-Vante N, Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI (2002) Electrochim Acta 47(22–23):3807

    Article  CAS  Google Scholar 

  8. Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bonnemann H, Kochubey DI, Savinova ER (2006) J Phys Chem B 110(13):6881

    Article  CAS  Google Scholar 

  9. Dassenoy F, Vogel W, Alonso-Vante N (2002) J Phys Chem B 106(47):12152

    Article  CAS  Google Scholar 

  10. Green CL, Kucernak A (2002) J Phys Chem B 106(44):11446

    Article  CAS  Google Scholar 

  11. Green CL, Kucernak A (2002) J Phys Chem B 106(5):1036

    Article  CAS  Google Scholar 

  12. Nagel T, Bogolowski N, Baltruschat H (2006) J Appl Electrochem 36(11):1297

    Article  CAS  Google Scholar 

  13. Cao D, Wieckowski A, Inukai J, Alonso-Vante N (2006) J Electrochem Soc 153(5):A869

    Article  CAS  Google Scholar 

  14. Wang H, Löffler T, Baltruschat H (2001) J Appl Electrochem 31:759

    Article  CAS  Google Scholar 

  15. Jusys Z, Massong H, Baltruschat H (1999) J Electrochem Soc 146:1093

    Article  CAS  Google Scholar 

  16. Baltruschat H (2004) J Am Soc Mass Spectrom 15:1693

    Article  CAS  Google Scholar 

  17. Bonnemann H, Nagabhushana KS (2004) J New Mat Electrochem Syst 7(2):93

    Google Scholar 

  18. Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ (1998) J Electrochem Soc 145(7):2354

    Article  CAS  Google Scholar 

  19. Baltruschat H (1999) In: Wieckowski A (ed) Interfacial electrochemistry. Marcel Dekker Inc., New York, Basel

    Google Scholar 

  20. Hartung T, Schmiemann U, Kamphausen I, Baltruschat H (1991) Anal Chem 63:44

    Article  CAS  Google Scholar 

  21. Schmiemann U (1993) PhD Thesis; Universität Witten-Herdecke

  22. Climent V, Gómez R, Feliu M (1999) Electrochim Acta 45:629

    Article  CAS  Google Scholar 

  23. Herrero E, Rodes A, Pérez JM, Feliu JM, Aldaz A (1996) J Electroanal Chem 412:165

    Article  Google Scholar 

  24. Lister TE, Colletti LP, Stickney JL (1997) Isr J Chem 37(2–3):287

    CAS  Google Scholar 

  25. Hubbard AT, Stickney JL, Rosasco SD, Song D, Soriaga MP (1983) Surf Sci 130:326

    Article  Google Scholar 

  26. Murthi VS, Urian RC, Mukerjee S (2004) J Phys Chem B 108(30):11011

    Article  CAS  Google Scholar 

  27. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons Inc., New York, Weinheim

    Google Scholar 

  28. Sepa DB, Vojnovic V, Damjanovic A (1981) Electrochim Acta 26:781

    Article  CAS  Google Scholar 

  29. Markovic MN, Ross PN (1999) In: Wieckowski A (ed) Interfacial electrochemistry. Marcel Dekker, Inc., New York

    Google Scholar 

  30. Metikos-Hukovic M, Babic R, Jovic F, Grubac Z (2006) Electrochim Acta 51(7):1157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the BMBF within the framework of the O2 RedNet project. We thank all members of the O2rednet, for stimulating discussions, particularly E. Savinova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Baltruschat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogolowski, N., Nagel, T., Lanova, B. et al. Activity of selenium modified ruthenium-electrodes and determination of the real surface area. J Appl Electrochem 37, 1485–1494 (2007). https://doi.org/10.1007/s10800-007-9378-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9378-1

Keywords

Navigation