Advertisement

Journal of Applied Electrochemistry

, Volume 37, Issue 12, pp 1485–1494 | Cite as

Activity of selenium modified ruthenium-electrodes and determination of the real surface area

  • Nicky Bogolowski
  • Tina Nagel
  • Barbora Lanova
  • Siegfried Ernst
  • Helmut BaltruschatEmail author
  • Kyatanahalli S. Nagabhushana
  • Helmut Boennemann
Original Paper

Abstract

The determination of the surface area of Pt and Ru electrocatalyst surfaces by oxidation of adsorbed CO and by oxidation of a Cu upd layer are compared. The amount of adsorbed CO was determined mass-spectrometrically from the ionic current for CO2 formation during an oxidative potential sweep. On Ru, the Faradaic charge is too large (by approx. 55%) due to Faradaic effects (oxygen adsorption). For massive Ru electrodes a Cu upd charge of 520 μC cm−2 is found after normalization to the area determined by CO oxidation. Using this value, both methods yield identical surface areas for nanoparticulate Ru catalysts. On Ru surfaces (both massive and nanoparticulate) completely covered by Se the amount of Cu upd charge decreases to one fourth of the value observed for pure Ru. Since CO is only adsorbed on free Ru sites and not on Se covered sites, the oxidation charge for the latter can be used to determine the number of free Ru sites, whereas the decrease of the Cu upd charge on Se modified surfaces can be used to calculate the area which is modified by Se. This method, previously tested on the model electrodes, was extended to Ru nanoparticle and Ru/Se electrodes. Using this surface determination it is possible to draw conclusions about the active surface area and the Se composition of the outer shell of Ru/Se nanoparticles.

For the first time we also show, using RRDE measurements, that the oxygen reduction reaction is enhanced by simple Se adsorption also on massive Ru. It could be shown that the activity for the Ru/Se electrode increases with the Se amount on the surface.

Keywords

Cu upd CO oxidation DEMS Ruthenium Selenium RRDE Oxygen reduction 

Notes

Acknowledgements

This work was financed by the BMBF within the framework of the O2 RedNet project. We thank all members of the O2rednet, for stimulating discussions, particularly E. Savinova.

References

  1. 1.
    Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H (2001) J Electroanal Chem 517(1–2):85CrossRefGoogle Scholar
  2. 2.
    Tributsch H, Bron M, Hilgendorff M, Schulenburg H, Dorbandt I, Eyert V, Bogdanoff P, Fiechter S (2001) J Appl Electrochem 31(7):739CrossRefGoogle Scholar
  3. 3.
    Neergat M, Leveratto D, Stimming U (2002) Fuel Cells 2(1):25CrossRefGoogle Scholar
  4. 4.
    Hilgendorff M, Diesner K, Schulenburg H, Bogdanoff P, Bron M, Fiechter S (2002) J New Mat Electrochem Syst 5(2):71Google Scholar
  5. 5.
    Leveratto D, Racz A, Savinova ER, Stimming U (2006) Fuel Cells 6(3–4):203CrossRefGoogle Scholar
  6. 6.
    Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI, Alonso-Vante N (2002) J Phys Chem B 106(7):1670CrossRefGoogle Scholar
  7. 7.
    Alonso-Vante N, Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI (2002) Electrochim Acta 47(22–23):3807CrossRefGoogle Scholar
  8. 8.
    Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bonnemann H, Kochubey DI, Savinova ER (2006) J Phys Chem B 110(13):6881CrossRefGoogle Scholar
  9. 9.
    Dassenoy F, Vogel W, Alonso-Vante N (2002) J Phys Chem B 106(47):12152CrossRefGoogle Scholar
  10. 10.
    Green CL, Kucernak A (2002) J Phys Chem B 106(44):11446CrossRefGoogle Scholar
  11. 11.
    Green CL, Kucernak A (2002) J Phys Chem B 106(5):1036CrossRefGoogle Scholar
  12. 12.
    Nagel T, Bogolowski N, Baltruschat H (2006) J Appl Electrochem 36(11):1297CrossRefGoogle Scholar
  13. 13.
    Cao D, Wieckowski A, Inukai J, Alonso-Vante N (2006) J Electrochem Soc 153(5):A869CrossRefGoogle Scholar
  14. 14.
    Wang H, Löffler T, Baltruschat H (2001) J Appl Electrochem 31:759CrossRefGoogle Scholar
  15. 15.
    Jusys Z, Massong H, Baltruschat H (1999) J Electrochem Soc 146:1093CrossRefGoogle Scholar
  16. 16.
    Baltruschat H (2004) J Am Soc Mass Spectrom 15:1693CrossRefGoogle Scholar
  17. 17.
    Bonnemann H, Nagabhushana KS (2004) J New Mat Electrochem Syst 7(2):93Google Scholar
  18. 18.
    Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ (1998) J Electrochem Soc 145(7):2354CrossRefGoogle Scholar
  19. 19.
    Baltruschat H (1999) In: Wieckowski A (ed) Interfacial electrochemistry. Marcel Dekker Inc., New York, BaselGoogle Scholar
  20. 20.
    Hartung T, Schmiemann U, Kamphausen I, Baltruschat H (1991) Anal Chem 63:44CrossRefGoogle Scholar
  21. 21.
    Schmiemann U (1993) PhD Thesis; Universität Witten-HerdeckeGoogle Scholar
  22. 22.
    Climent V, Gómez R, Feliu M (1999) Electrochim Acta 45:629CrossRefGoogle Scholar
  23. 23.
    Herrero E, Rodes A, Pérez JM, Feliu JM, Aldaz A (1996) J Electroanal Chem 412:165CrossRefGoogle Scholar
  24. 24.
    Lister TE, Colletti LP, Stickney JL (1997) Isr J Chem 37(2–3):287Google Scholar
  25. 25.
    Hubbard AT, Stickney JL, Rosasco SD, Song D, Soriaga MP (1983) Surf Sci 130:326CrossRefGoogle Scholar
  26. 26.
    Murthi VS, Urian RC, Mukerjee S (2004) J Phys Chem B 108(30):11011CrossRefGoogle Scholar
  27. 27.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons Inc., New York, WeinheimGoogle Scholar
  28. 28.
    Sepa DB, Vojnovic V, Damjanovic A (1981) Electrochim Acta 26:781CrossRefGoogle Scholar
  29. 29.
    Markovic MN, Ross PN (1999) In: Wieckowski A (ed) Interfacial electrochemistry. Marcel Dekker, Inc., New YorkGoogle Scholar
  30. 30.
    Metikos-Hukovic M, Babic R, Jovic F, Grubac Z (2006) Electrochim Acta 51(7):1157CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Nicky Bogolowski
    • 1
  • Tina Nagel
    • 1
  • Barbora Lanova
    • 1
  • Siegfried Ernst
    • 1
  • Helmut Baltruschat
    • 1
    Email author
  • Kyatanahalli S. Nagabhushana
    • 2
    • 3
  • Helmut Boennemann
    • 4
  1. 1.Institut für Physikalische und Theoretische ChemieUniversität BonnBonnGermany
  2. 2.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany
  3. 3.Department of ChemistryManipal Institute of TechnologyManipalIndia
  4. 4.Forschungszentrum Karlsruhe, ITC-CPVKarlsruheGermany

Personalised recommendations