Skip to main content
Log in

Surface active state involvement in electrocatalytic reductions at copper in acid solution

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic behaviour of copper in acid is dominated by a metastable state interfacial redox transition which occurs within the double layer region, at ca. −0.7 (±0.1) V (SMSE). The transition in question is apparently based on the presence of low coverage, redox active, copper surface clusters which function as active sites or mediators and thus facilitate electron transfer across the interface; copper in acid exhibits a remarkably high overpotential of ca. 1.2 V for oxygen reduction. The effect of copper plating bath additives on the electrocatalytic properties of copper was surveyed and it was demonstrated that with a compound such as thiourea, the presence in solution of a species such as nitrate, which under additive-free conditions undergoes rapid mediated reduction, exacerbates the surface deactivating effect of the additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andricacos PC (1999) The Electrochem Soc 8:32

    CAS  Google Scholar 

  2. Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H (1998) IBM J Res Dev 42:567

    CAS  Google Scholar 

  3. Hussein MA, He J (2005) IEEE Trans Semiconductor Manuf 18:69

    Article  Google Scholar 

  4. Kang M, Gross ME, Gerwirth AA (2003) J Electrochem Soc 150:C292

    Article  CAS  Google Scholar 

  5. Moffat TP, Wheeler D, Edelstein ED, Josell D (2005) IBM J Res Dev 49:19

    CAS  Google Scholar 

  6. Pletcher D, Poorabedi Z (1979) Electrochim Acta 24:1253

    Article  CAS  Google Scholar 

  7. Albery WJ, Haggett BGD, Jones CP, Prichard MJ, Svanberg LR (1985) J Electroanal Chem 188:257

    Article  CAS  Google Scholar 

  8. Dima GE, de Vooys ACA, Koper MTM (2003) J Electroanal Chem 554:15

    Article  CAS  Google Scholar 

  9. Marquez J, Pletcher D (1980) J Appl Electrochem 10:567

    Article  CAS  Google Scholar 

  10. Nolen TR, Fedkiw PS (1990) J Appl Electrochem 20:370

    Article  CAS  Google Scholar 

  11. Polat K, Aksu ML, Pekel AT (2002) J Appl Electrochem 32:217

    Article  CAS  Google Scholar 

  12. Nolen TR (1988) J Electrochem Soc Rev News 135:29C

    Article  CAS  Google Scholar 

  13. Burke LD, O’Connell AM, Sharna R, Buckley CA (2006) J Appl Electrochem 36:919

    Article  CAS  Google Scholar 

  14. Burke LD, Buckley CA, Sharna R (2007) ESC Trans 2(6):197

    Google Scholar 

  15. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergammon Press, Oxford

    Google Scholar 

  16. Andrews LJ, Keefer RM (1950) J Am Chem Soc 72:3113

    Article  CAS  Google Scholar 

  17. Hori Y, Murata A, Takahashi R (1989) J Chem Soc Faraday Trans 85:2309

    Article  CAS  Google Scholar 

  18. Das TN (2005) Ind Eng Chem Res 44:1660

    Article  CAS  Google Scholar 

  19. EI-Deab MS, Okajima T, Ohsaka T (2003) J Electrochem Soc 150:A851

    Article  CAS  Google Scholar 

  20. Vukmirovic MB, Vasiljevic N, Dimitrov N, Sieradzki K (2003) J Electrochem Soc 150:B10

    Article  CAS  Google Scholar 

  21. Metikoš-Hukovic’ M, Babic’ R, Jovic’ F, Grubač Z (2006) Electrochim Acta 51:1157

    Article  CAS  Google Scholar 

  22. Sarapuu A, Tammeveski K, Tenno TT, Sammelselg V, Kontturi K, Schiffrin DJ (2001) Electrochem Commun 3:446

    Article  CAS  Google Scholar 

  23. Ertl G (2000) In: Gates BC, Knözinger H (eds) Advances in catalysis, vol 45. Academic, New York

  24. Somorjai GA (1977) In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 26. Academic, New York

  25. Dieluweit S, Giesen M (2002) J Electroanal Chem 524:194

    Article  Google Scholar 

  26. Burke LD (2004) Gold Bull 37:125

    CAS  Google Scholar 

  27. Burke LD, Collins JA, Murphy MA (1999) J Solid State Electrochem 4:34

    Article  CAS  Google Scholar 

  28. Pletcher D (1984) J Appl Electrochem 14:403

    Article  CAS  Google Scholar 

  29. Burke LD, Nugent PF (1999) Electrochim Acta 42:399

    Article  Google Scholar 

  30. Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2006) Electrochim Acta 52:1662

    Article  CAS  Google Scholar 

  31. Yokoi M, Konishi S, Hayashi T (1983) Denki Kagaku 51:460

    CAS  Google Scholar 

  32. Nagy Z, Blaudeau JP, Hung NC, Curtiss LA, Zurawski DJ (1995) J Electrochem Soc 142:L87

    Article  CAS  Google Scholar 

  33. Nakahara S, Ahmed S, Buckley DN (2007) Electrochem Solid-State Lett 10:D17

    Article  CAS  Google Scholar 

  34. Healy JP, Pletcher D, Goodenough M (1992) J Electroanal Chem 338:155

    Article  CAS  Google Scholar 

  35. Healy JP, Pletcher D (1992) J Electroanal Chem 338:179

    Article  Google Scholar 

  36. Vereecken PM, Binsread RA, Deligianni H, Andricacos PC (2005) IBM J Res Dev 49:3

    Article  CAS  Google Scholar 

  37. Taephaisitphongse P, Cao Y, West AC (2001) J Electrochem Soc 148:C492

    Article  CAS  Google Scholar 

  38. Murray RW (1984) In: Bard AJ (ed) Electroanalytical chemistry, vol 13. Dekker, New York

  39. Taniguchi I (1997) The Electrochem Soc Interface 6:34

    CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by Science Foundation Ireland (SFI) under Grant No. 02/INI/1217; RS was awarded an SFI postgraduate research studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Burke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, L.D., Sharna, R. Surface active state involvement in electrocatalytic reductions at copper in acid solution. J Appl Electrochem 37, 1119–1128 (2007). https://doi.org/10.1007/s10800-007-9370-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9370-9

Keywords

Navigation