Journal of Applied Electrochemistry

, Volume 37, Issue 12, pp 1455–1462 | Cite as

Ruthenium selenide catalysts for cathodic oxygen reduction in direct methanol fuel cells

  • Alexander RaczEmail author
  • Petra Bele
  • Carsten Cremers
  • Ulrich Stimming
Original Paper


The oxygen reduction reaction in sulphuric acid on commercial carbon supported platinum and ruthenium catalysts as well as on a home-made carbon supported ruthenium selenide catalysts (RuSe x /C) was investigated. The RuSe x /C catalysts were synthesised using similar procedures to those found in the literature. A dependency of H2O2 formation on the selenium content was found using the thin-film rotating ring disc electrode technique, namely that the H2O2 formation in the typical operation range of a Direct Methanol Fuel Cell (0.7–0.4 V) on Pt/C is below 1% and 1–4% on Ru/C and RuSe x /C catalysts. Finally for comparing the intrinsic activities of the catalysts the electrochemically active surface areas were determined in-situ by means of copper underpotential deposition. Our results indicate a comparable activity of the present RuSe x /C catalyst to commercial Pt/C if the activities are related to the electrochemical active areas.


Oxygen reduction Rotating ring disc electrode Copper underpotential deposition Ruthenium Selenium 



We thank the BMBF for financial support under contract 01SF0302 (“O2RedNet”) and the “Gemeinschaftslabor für Elektronenmikroskopie” (Prof. J. Mayer, RWTH Aachen) for use of their TECNAI G2 F20 microscope to perform the HAADF-STEM and EDX measurements. We also thank Dr Rainer Bußar for helpful discussions.


  1. 1.
    Arico AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133CrossRefGoogle Scholar
  2. 2.
    Ravikumar MK, Shukla AK (1996) J Electrochem Soc 143:2601CrossRefGoogle Scholar
  3. 3.
    Alonso-Vante N, Bogdanoff P, Tributsch H (2000) J Catal 190:240CrossRefGoogle Scholar
  4. 4.
    Solorza-Feria O, Ellmer K, Giersig M, Alonso-Vante N (1994) Electrochimica Acta 39:1647CrossRefGoogle Scholar
  5. 5.
    Neergat M, Leveratto D, Stimming U (2002) Fuel Cells 2:25CrossRefGoogle Scholar
  6. 6.
    Le Rhun V, Garnier E, Pronier S, Alonso-Vante N (2000) Electrochem Commun 2:475CrossRefGoogle Scholar
  7. 7.
    Cremers C, Scholz M, Seliger W, Racz A, Knechtel W, Rittmayr J, Grafwallner F, Peller H, Stimming U (2007) Fuel Cells 7:21CrossRefGoogle Scholar
  8. 8.
    Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ, (1998) J Electrochem Soc 145:2354CrossRefGoogle Scholar
  9. 9.
    Bele P, Jäger F, Stimming U (2007) Microscopy and analysis (in press)Google Scholar
  10. 10.
    Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  11. 11.
    Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) J Electroanal Chem 495:134CrossRefGoogle Scholar
  12. 12.
    Schmidt TJ , Paulus UA, Gasteiger HA, Alonso-Vante N, Behm RJ (2000) J Electrochem Soc 147:2620CrossRefGoogle Scholar
  13. 13.
    Biegler T, Rand DAJ, Woods R (1971) J Electroanal Chem 29:269CrossRefGoogle Scholar
  14. 14.
    Hadzi-Jordanov S, Angerstein-Kozlowska H, Vukovic M, Conway BE (1977) J Phys Chem 81:2271CrossRefGoogle Scholar
  15. 15.
    Green CL, Kucernak A (2002) J Phys Chem B 106:1036CrossRefGoogle Scholar
  16. 16.
    Carbonnelle P, Lamberts L (1992) J Electroanal Chem 340:53CrossRefGoogle Scholar
  17. 17.
    Nagel T, Bogolowski N, Baltruschat H (2006) J Appl Electrochem 36:1297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Alexander Racz
    • 1
    Email author
  • Petra Bele
    • 1
  • Carsten Cremers
    • 2
    • 3
  • Ulrich Stimming
    • 1
    • 2
  1. 1.Department of Physics E19TU MünchenGarchingGermany
  2. 2.Division 1ZAE BayernGarchingGermany
  3. 3.Fraunhofer Institut Chemische Technologie (ICT)PfinztalGermany

Personalised recommendations