Skip to main content
Log in

A tubular microbial fuel cell

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript


Cell potential and power performance for tubular microbial fuel cells utilising manure as fuel are reported. The microbial fuel cells do not use a mediator, catalysts or a proton exchange membrane. The cell design has been scaled up to a size of 1.8 m in length using electrodes of 0.4 m2 in area. The cell does not require a strictly controlled anaerobic environment and has potential practical applications when adapted into the form of a helix allowing fuel to flow through it. The cell could be used for power generation in remote applications. The peak power density of the cell is over 3 μW cm −2 (30 mW m−2). The performance can be improved by a more effective design of the interface between the anode and cathode chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others


  1. Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovely DR (1996) Appl and Environ Microbiol 62:1531

    CAS  Google Scholar 

  2. Lovely DR (2002) OMICS J Integr Biol 6:331

    Article  CAS  Google Scholar 

  3. Bond DR, Holmes DE, Tender LM, Lovely DR (2002) Science 295:483

    Article  CAS  Google Scholar 

  4. Hyun MS, Kim BH, Chang IN, Park S, Kim HJ, Kim T, Kim MA, Park DH (1999) J Microbiol 38:206

    Google Scholar 

  5. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) Enzyme Microbiol Technol 30:145

    Article  CAS  Google Scholar 

  6. Park H, Kim BH, Kim HS (2001) Anaerobe 7:297

    Article  CAS  Google Scholar 

  7. Pham CA, Jung SJ, Phung NT, Lee J, Chang IN, Kim BH, Yi H, Chun J (2003) Microbiol Lett 223:129

    Article  CAS  Google Scholar 

  8. Tender LM, Reimers CE, Stecher III HA, Holme DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovely DR (2002) Nature Biotechnol 20:821

    CAS  Google Scholar 

  9. Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Process Biochem 39:1007

    Article  CAS  Google Scholar 

  10. Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) Biotechnol Lett 25:1531

    Article  CAS  Google Scholar 

  11. Habermann W, Pommer EH (1991) Appl Microbiol Biotechnol 35:128

    Article  CAS  Google Scholar 

  12. Liu H, Ramnarayanan R, Logan BE (2004) Environ Sci Technol 38:2281

    Article  CAS  Google Scholar 

  13. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Environ Sci Technol 39:8077

    Article  CAS  Google Scholar 

  14. He Z, Minteer SD, Angenent LT (2005) Environ Sci Technol 39:5262

    Article  CAS  Google Scholar 

  15. Kim HJ, Park H, Hyun MS, Chang IS, Kim M, Kim BH (2002) Enzyme and Microbial Technol 30:145

    Article  CAS  Google Scholar 

  16. Kreysa G, Sell D (1990) Berichte der Bunsen-Gesellschaft Phy Chem 90:1042

    Google Scholar 

  17. Allen RM, Bennetto HP (1993) Applied Biochem and Biotechnol 39:27

    Article  Google Scholar 

  18. Davis F, Higson SPJ (2007) Biosen Bioelectron 22:1224

    Article  CAS  Google Scholar 

  19. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biosens Bioelectro 21:2015

    CAS  Google Scholar 

  20. Lowy JG, Tender LM, Zeikus JG, Park DH, Lovely DR (2006) Biosens Bioelectron 21:2058

    Article  CAS  Google Scholar 

  21. Lovely DR (2006) Curr Opin Biotechnol 17:327

    Article  CAS  Google Scholar 

  22. Cheng S, Liu H, Logan BE (2006) Environ Sci Technol 40:364

    Article  CAS  Google Scholar 

  23. Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Electrochem Comm 7:1405

    Article  CAS  Google Scholar 

Download references


Shell Global solutions and EPSRC supported this work through a CASE studentship to C Murano. Research was performed in laboratories facilities provided by an EPSRC-HEFCE JIF award. The support of the European Union for Transfer of Knowledge award (MTKD-CT-2004-517215) for biological fuel cells is acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, K., Murano, C. & Rimbu, G. A tubular microbial fuel cell . J Appl Electrochem 37, 1063–1068 (2007).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: