Advertisement

Journal of Applied Electrochemistry

, Volume 37, Issue 12, pp 1447–1454 | Cite as

Realising a reference electrode in a polymer electrolyte fuel cell by laser ablation

  • Dietmar GerteisenEmail author
Original Paper

Abstract

This work presents a new concept for realising a reference electrode configuration in a PEM fuel cell by means of laser ablation. The laser beam is used to evaporate a small part of the electrode of a catalyst-coated membrane (CCM) to isolate the reference electrode from the active catalyst layer. This method enables the simultaneous ablation of the electrodes on both sides of the CCM because the membrane is transparent for the laser beam. Therefore, a smooth electrode edge without electrode misalignment can be realised. A test fuel cell was constructed which together with the ablated CCM enables the separation of the total cell losses during operation into the cathode, anode and membrane overpotentials in PEFC as well as in DMFC mode. The methanol tolerance of a selenium-modified ruthenium-based catalyst (RuSe x ) was investigated under real fuel cell conditions by measuring polarisation curves, electrochemical impedance spectroscopy (EIS) and current interrupt measurements (CI).

Keywords

PEMFC DMFC Methanol-tolerant catalyst Reference electrode Current interrupt measurements Electrochemical impedance spectroscopy 

Notes

Acknowledgements

This work was financially supported by the Bundesministerium für Bildung und Forschung (BMBF) under contract No. 03SF0302. Special thanks goes to Dr. S. Fiechter from HMI Berlin for the supply of RuSe x -catalyst and Dr. K. Wippermann from RC Juelich for preparing the CCM samples.

References

  1. 1.
    Iwasita T (2003) In: Vielstich W, Gaststeiger H, Lamm A (eds) Handbook of fuel cells, vol 2. Wiley, Chichester, pp 603–624Google Scholar
  2. 2.
    Paganin VA, Sitta E, Iwasita T, Vielstich W (2005) J Appl Electrochem 35:1239CrossRefGoogle Scholar
  3. 3.
    Dohle H, Jung R, Kimiaie N, Mergel J, Müller M (2003) J Power Sources 124:371CrossRefGoogle Scholar
  4. 4.
    Zhao X, Fan X, Wang S, Yang S, Yi B, Xin Q, Sun G (2005) Int J Hydrogen Energy 30:1003CrossRefGoogle Scholar
  5. 5.
    Silva V, Schirmer J, Reissner R, Ruffmann B, Silva H, Mendes A, Madeira L, Nunes S (2005) J Power Sources 140:41CrossRefGoogle Scholar
  6. 6.
    Eickes C, Piela P, Davey J, Zelenay P (2006) J Electrochem Soc 153(1):A171CrossRefGoogle Scholar
  7. 7.
    Lee K, Savadogo O, Ishihara A, Mitsushima S, Kamiya N, Ota K (2006) J Electrochem Soc 153(1):A20CrossRefGoogle Scholar
  8. 8.
    Krewer U, Sundmacher K (2005) J Power Sources 154:153CrossRefGoogle Scholar
  9. 9.
    Scott K, Shukla A, Jackson C, Meuleman W (2004) J Power Sources 126:67CrossRefGoogle Scholar
  10. 10.
    Jörisson L, Gogel V, Kerres J, Garche J (2002) J Power Sources 105:267CrossRefGoogle Scholar
  11. 11.
    Jiang R (2006) J Electrochem Soc 153(8):A1554CrossRefGoogle Scholar
  12. 12.
    Kallo J, Kamara J, Lehnert W, von Helmolt R (2004) J Power Sources 127:181CrossRefGoogle Scholar
  13. 13.
    Tributsch H, Bron M, Hilgendorff M, Schulenburg H, Dorbandt I, Eyert V, Bogdanoff P, Fiechter S (2001) J Appl Electrochem 31:739CrossRefGoogle Scholar
  14. 14.
    Koffi R, Coutanceau C, Garnier E, Léger JM, Lamy C (2005) Electrochim Acta 50:4117CrossRefGoogle Scholar
  15. 15.
    Yang H, Coutanceau C, Léger JM, Alonso-Vante N, Lamy C (2005) J Appl Electrochem 576:305Google Scholar
  16. 16.
    Adler S, Henderson B, Wilson M, Taylor D, Richards R (2000) Solid State Ionics 134:35CrossRefGoogle Scholar
  17. 17.
    Liu Z, Wainright JS, Huang W, Savinell RF (2004) Electrochim Acta 49:923CrossRefGoogle Scholar
  18. 18.
    Nagata M, Itoh Y, Iwahara H (1994) Solid State Ionics 67:215CrossRefGoogle Scholar
  19. 19.
    He W, Van Nguyen T (2004) J Electrochem Soc 151(2):A185CrossRefGoogle Scholar
  20. 20.
    Siroma Z, Kakitsubo R, Fujiwara N, Ioroi T, Yamazaki SI, Yasuda K (2006) J Power Sources 156:284CrossRefGoogle Scholar
  21. 21.
    Li G, Pickup P (2004) Electrochim Acta 49:4119CrossRefGoogle Scholar
  22. 22.
    Schmitz A, Wagner S, Hahn R, Weil A, Schneiderlöcher E, Tranitz M, Hebling C (2004) Fuel Cells 4(3):1CrossRefGoogle Scholar
  23. 23.
    Wiezell K, Gode P, Lindbergh G (2006) J Electrochem Soc 153(4):A749CrossRefGoogle Scholar
  24. 24.
    Wiezell K, Gode P, Lindbergh G (2006) J Electrochem Soc 153(4):A759CrossRefGoogle Scholar
  25. 25.
    Argyropoulos P, Scott K, Taama W (2000) J Power Sources 87:153CrossRefGoogle Scholar
  26. 26.
    Argyropoulos P, Scott K, Taama W (2000) Electrochim Acta 45:1983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Fraunhofer Institute for Solar Energy SystemsFreiburgGermany

Personalised recommendations