Advertisement

Journal of Applied Electrochemistry

, Volume 37, Issue 12, pp 1439–1446 | Cite as

Electroreduction of oxygen at tungsten oxide modified carbon-supported RuSex nanoparticles

  • P. J. KuleszaEmail author
  • K. Miecznikowski
  • B. Baranowska
  • M. Skunik
  • A. Kolary-Zurowska
  • A. Lewera
  • K. Karnicka
  • M. Chojak
  • I. Rutkowska
  • S. Fiechter
  • P. Bogdanoff
  • I. Dorbandt
  • G. Zehl
  • R. Hiesgen
  • E. Dirk
  • K. S. Nagabhushana
  • H. Boennemann
Original Paper

Abstract

WO3-modified carbon-supported bi-component ruthenium–selenium, RuSex (Ru, 20; Se, 1 wt%), nanoparticles were dispersed in the form of Nafion-containing inks on glassy carbon electrodes to produce electrocatalytic interfaces reactive towards electroreduction of dioxygen in acid medium (0.5 mol dm−3 H2SO4). It was apparent from the rotating disk voltammetric experiments that the reduction of oxygen proceeded at WO3-modified electrocatalyst at more than 100 mV more positive potential when compared to bare (WO3-free) RuSex system (that had been prepared under analogous conditions and deposited at the same loading of 156 μg cm−2). The ring-disk rotating voltammetric measurements show that, while the production of hydrogen peroxide intermediate was significantly lower, the kinetic parameter (heterogeneous rate constant) for the oxygen reduction was higher for WO3-modified RuSex (relative to bare RuSex). Comparison was also made to highly-efficient Vulcan-supported Pt or Pt/Co nanoparticles: while the half-wave potential for the oxygen reduction at WO3-modified carbon-supported RuSex was still more negative relative to the potentials characteristic of Pt-based electrocatalysts, the oxygen reduction rotating disk voltammetric current densities (measured at 1600 rpm) were almost identical.

Keywords

Oxygen reduction Rotating disk voltammetry Acid electrolyte Ruthenium–selenium nanoparticles Tungsten oxide 

Notes

Acknowledgements

This work was supported by the Network Efficient Oxygen Reduction for Electrochemical Energy Conversion (coordinated by ZSW, Ulm, Germany). The Warsaw group acknowledges partial support from Ministry of Science and Higher Education (Poland) under the grant N204 164 32/4284. Helpful discussions with Prof. H. Tributsch of Hahn-Meitner-Institut, Berlin are appreciated.

References

  1. 1.
    Kordesch K, Simader G (1996) Fuel cells and their applications. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Wasmus S, Kuver A (1999) J Electroanal Chem 461:14CrossRefGoogle Scholar
  3. 3.
    Arico AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133CrossRefGoogle Scholar
  4. 4.
    Hogarth MP, Hards GA (1996) Platinum Met Rev 40:150Google Scholar
  5. 5.
    Vielstich W, Lamm A, Gasteiger H (eds) (2003) Handbook of fuel cells; A., vol 2. Wiley, ChichesterGoogle Scholar
  6. 6.
    Chu D, Gilman S (1994) J Electrochem Soc 141:177Google Scholar
  7. 7.
    Heinzel A, Barragan VM (1999) J Power Sources 84:70CrossRefGoogle Scholar
  8. 8.
    Alonso-Vante N, Bogdanoff P, Tributsch H (2000) J Catal 190:240CrossRefGoogle Scholar
  9. 9.
    Holze R, Vogel I, Vielstich W (1986) J Electroanal Chem Interfacial Electrochem 210:277Google Scholar
  10. 10.
    Bittins-Cattaneo B, Wasmus S, Lopez-Mishima B, Vielstich W (1993) J Appl Electrochem 23:625CrossRefGoogle Scholar
  11. 11.
    Rodriguez FJ, Sebastian PJ, Solorza O (1998) Int J Hydrogen Energy 23:1031CrossRefGoogle Scholar
  12. 12.
    Tributsch H, Bron M, Hilgendorff M, Schulenburg H, Dorbandt I, Eyert V, Bogdanoff P, Fiechter S (2001) J Appl Electrochem 31:739CrossRefGoogle Scholar
  13. 13.
    Chu D, Jiang R (2002) Solid State Ionics 148:591CrossRefGoogle Scholar
  14. 14.
    Solorza-Feria O, Ellmer K, Giersig M, Alonso-Vante N (1994) Electrochim Acta 39:1647CrossRefGoogle Scholar
  15. 15.
    Schmidt TJ, Paulus UA, Gasteiger HA, Alonso-Vante N, Behm RJ (2000) J Electrochem Soc 147:2620CrossRefGoogle Scholar
  16. 16.
    Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI, Alonso-Vante N (2002) J Phys Chem B 106:1670CrossRefGoogle Scholar
  17. 17.
    Cao D, Wieckowski A, Inukai J, Alonso-Vante N (2006) J Electrochem Soc 153:A874CrossRefGoogle Scholar
  18. 18.
    Alonso-Vante N, Solorza-Feria O (1995) Electrochim Acta 40:567CrossRefGoogle Scholar
  19. 19.
    Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) J Electroanal Chem 495:134CrossRefGoogle Scholar
  20. 20.
    Schulenburg H, Hilgendorff M, Dorbandt I, Radnik J, Peter Bogdanoff S, Fiechter M, Bron H, Tributsch J (2006) Power Sources 155:47CrossRefGoogle Scholar
  21. 21.
    Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bonnemann H, Kochubey DI, Savinova ER (2006) J Phys Chem B 110:6881CrossRefGoogle Scholar
  22. 22.
    Kulesza PJ, Miecznikowski K, Baranowska B, Skutnik M, Fiechter S, Bogdanoff P, Dorbandt I (2006) Electrochem Comm 8:904CrossRefGoogle Scholar
  23. 23.
    Kulesza PJ, Faulkner LR (1988) J Electroanal Chem 248:305CrossRefGoogle Scholar
  24. 24.
    Kulesza PJ, Grzybowska B, Malik MA, Galkowski MT (1997) J Electrochem Soc 144:1911CrossRefGoogle Scholar
  25. 25.
    Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2003) J Electroanal Chem 554–555:191CrossRefGoogle Scholar
  26. 26.
    Zecevic SK, Wainright JS, Litt MH, Gojkovic SLj, Savinell RF (1997) J Electrochem Soc 144:2973CrossRefGoogle Scholar
  27. 27.
    Paulus UA, Schmidt TJ, Gsteiger HA, Behm RJ (2001) J Electroanal Chem 495:134CrossRefGoogle Scholar
  28. 28.
    Colmenares L, Jusys Z, Kinge S, Boennemann H, Behm RJ (2006) J New Mater Electrochem Syst 9:107 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • P. J. Kulesza
    • 1
    Email author
  • K. Miecznikowski
    • 1
  • B. Baranowska
    • 1
  • M. Skunik
    • 1
  • A. Kolary-Zurowska
    • 1
  • A. Lewera
    • 1
  • K. Karnicka
    • 1
  • M. Chojak
    • 1
  • I. Rutkowska
    • 1
  • S. Fiechter
    • 2
  • P. Bogdanoff
    • 2
  • I. Dorbandt
    • 2
  • G. Zehl
    • 2
  • R. Hiesgen
    • 3
  • E. Dirk
    • 3
  • K. S. Nagabhushana
    • 4
  • H. Boennemann
    • 4
  1. 1.Department of ChemistryUniversity of WarsawWarsawPoland
  2. 2.Hahn-Meitner-InstitutAbt. Solare EnergeticBerlinGermany
  3. 3.Department of Basic SciencesUniversity of Applied Sciences EsslingenEsslingenGermany
  4. 4.Forschungszentrum Karslruhe in der Helmholtz-Gemeinschaft Institut fur Technische Chemie ITC-CPVKarslruheGermany

Personalised recommendations