Journal of Applied Electrochemistry

, Volume 37, Issue 9, pp 1001–1008 | Cite as

The growth kinetics and properties of potentiodynamically formed thin oxide films on aluminium in citric acid solutions

  • D. HasenayEmail author
  • M. Šeruga
Original Paper


The growth kinetics and properties of potentiodynamically formed thin oxide films on Al were investigated in 0.05 M citric acid solutions of different pH (5, 6 and 7) by means of potentiodynamic polarization and a.c. electrochemical impedance spectroscopy (EIS) measurements. Al showed passive behaviour within the pH range that was examined. The potentiodynamic growth of the oxide film on Al takes place due to ionic conductivity under the influence of the high electric field. Characteristic kinetic oxide film growth parameters such as the high-field growth exponential law constants (A and B), ionic conductivity through the oxide film, field strength and half barrier width have been calculated. Impedance measurements were used to determine the parameters related to the characteristic sizes and properties of oxide film. The capacitive response of the impedance spectrum was related to the thickness and dielectric properties of the barrier oxide film. The oxide film resistance values were very high, indicating that the oxide films formed under potentiodynamic conditions are highly uniform in thickness and very resistant. The anodic behaviour of Al in the citric solutions under potentiodynamic conditions were characterized by the rapid growth of the oxide film which diminished the influence of relaxation processes on the growth kinetics and structural characteristics of the aluminium/anodic oxide film/electrolyte system.


Aluminium Anodic oxide film growth Citric acid Impedance spectroscopy 


  1. 1.
    Thompson GE (1997) Thin Solid Films 297:192CrossRefGoogle Scholar
  2. 2.
    Lohrengel MM (1993) Mater Sci Eng R11:243Google Scholar
  3. 3.
    Despić A, Parkhutik VP (1989) In: Bockris JO, White RE, Conway BE (eds) Modern aspects of electrochemistry, vol 20, Plenum Press, New YorkGoogle Scholar
  4. 4.
    Bessone J, Mayer C, Jüttner K, Lorenz WJ (1983) Electrochim Acta 28:171CrossRefGoogle Scholar
  5. 5.
    Gudić S, Radošević J, Kliškić M (1996) J Appl Electrochem 26:1027Google Scholar
  6. 6.
    Gudić S, Radošević J, Krpan-Lisica D, Kliškić M (2001) Electrochim Acta 46:2515CrossRefGoogle Scholar
  7. 7.
    Bockris JO’M, Kang Y (1997) J Solid State Electrochem 1:17CrossRefGoogle Scholar
  8. 8.
    Abdel Rehim SS, Hassan HH, Amin MA (2002) J Appl Electrochem 32:1257CrossRefGoogle Scholar
  9. 9.
    Yakovleva NM, Anicai L, Yakovlev AN, Dima L, Khanina EYa, Chupakhina EA (2003) Inorg Mater 39:58Google Scholar
  10. 10.
    Dignam MJ (1972) In: Diggle JW (ed) Oxides and oxide films, vol 1, Marcel Dekker, New York, 91 ppGoogle Scholar
  11. 11.
    Wood GC, Skeldon P, Thompson GE, Shimizu K (1996) J Electrochem Soc 143:74CrossRefGoogle Scholar
  12. 12.
    Shimizu K, Habazaki H, Skeldon P, Thompson GE, Wood GC (2001) Electrochim Acta 46:4379CrossRefGoogle Scholar
  13. 13.
    Rüße S, Lohrengel MM, Shultze JW (1994) Solid State Ionics 72:29CrossRefGoogle Scholar
  14. 14.
    Hurlen T, Haug AT (1984) Electrochim Acta 29:1133CrossRefGoogle Scholar
  15. 15.
    Moon S-M, Pyun S-I (1998) J Solid State Electrochem 2:156CrossRefGoogle Scholar
  16. 16.
    Cabot PLL, Centellas FA, Garrido JA, Pérez E (1987) J Appl Electrochem 17:104CrossRefGoogle Scholar
  17. 17.
    Šeruga M, Hasenay D (2001) J Appl Electrochem 31:961CrossRefGoogle Scholar
  18. 18.
    Lenderink HJW, Linden MVD, de Witt JHW (1993) Electrochim Acta 38:1989CrossRefGoogle Scholar
  19. 19.
    Deltombe E, Vanleugenhaghe C, Pourbaix M (1966) In: Pourbaix M (ed) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press Cebelcor, Oxford-Brussels, 168 ppGoogle Scholar
  20. 20.
    Furrer G, Stumm W (1983) Chimia 37:338Google Scholar
  21. 21.
    Žutić V, Stumm W (1984) Geochim Cosmochim Acta 48:1493CrossRefGoogle Scholar
  22. 22.
    Aoki IV, Bernard M-C, Cordoba de Toresi SI, Deslouis C, de Melo HG, Joiret S, Tribollet B, (2001) Electrochim Acta 46:1871CrossRefGoogle Scholar
  23. 23.
    Brett CMA (1992) Corros Sci 33:203CrossRefGoogle Scholar
  24. 24.
    Bessone JB, Salinas DR, Mayer CE, Ebert M, Lorenz WJ (1992) Electrochim Acta 37:2283CrossRefGoogle Scholar
  25. 25.
    Boukamp BA (1989) Equivalent circuits 3.97 users manual, University of TwenteGoogle Scholar
  26. 26.
    Gudić S, Radošević J, Kliškić M (2002) Electrochim Acta 47:3009CrossRefGoogle Scholar
  27. 27.
    Gudić S, Radošević J, Višekruna A, Kliškić M (2004) Electrochim Acta 49:773CrossRefGoogle Scholar
  28. 28.
    Williams DE, Wright GA (1976) Electrochim Acta 21:1009CrossRefGoogle Scholar
  29. 29.
    de Witt HJ, Wijenberg C, Crevecoeur C (1979) J Electrochem Soc 126:779CrossRefGoogle Scholar
  30. 30.
    de Witt JHW, Lenderink HJW (1996) Electrochim Acta 41:1111CrossRefGoogle Scholar
  31. 31.
    Metikoš-Huković M, Grubač Z (2003) J Electroanal Chem 556:167CrossRefGoogle Scholar
  32. 32.
    Grubač Z, Metikoš-Huković M (2004) J Electroanal Chem 565:85CrossRefGoogle Scholar
  33. 33.
    Hurlen T, Lian H, Ødegard OS, Valand T (1984) Electrochim Acta 29:579CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Physical Chemistry and Electrochemistry, Faculty of Food TechnologyUniversity of OsijekOsijekCroatia

Personalised recommendations