Journal of Applied Electrochemistry

, Volume 37, Issue 8, pp 905–912 | Cite as

Roles of adsorbed OH and adsorbed H in the oxidation of hydrogen and the reduction of UO 2 2+ ions at Pt electrodes under non-conventional conditions

  • Jei-Won Yeon
  • Su-Il PyunEmail author
Original Paper


The roles of adsorbed hydroxyl radicals, OH, at a high temperature and adsorbed hydrogen atoms, H, in an acidic solution were investigated in the electrochemical reactions on Pt electrode by using potentiodynamic polarisation experiment, cyclic voltammetry and constant-potential electrolysis combined with UV/VIS analysis. From the analysis of the polarisation curves obtained from Pt electrode in a 0.185 M H3BO3 solution at 473 K, it was found that the reducing capability of dissolved hydrogen is significantly enhanced due to the increases of the mass transfer and the electron transfer rates. Especially, it is suggested that the stable Pt-OHad plays a significant role in the passivation reaction in the potential range from 0.60 to 0.75 VSHE. From the analyses of the experimental results for the electrochemical reduction of UO 2 2+ ions on Pt surface in a 1.0 M HClO4 solution, it is recognised that the reduction reaction of UO 2 2+ to U4+ ions is strongly dependent on the hydrogen atoms adsorbed on Pt electrode (indirect reduction of UO 2 2+ ) as well as on the electrons transferred from Pt electrode (direct reduction of UO 2 2+ ). In addition, the reduction mechanism of UO 2 2+ ions involved in Pt-Had is also proposed.


Adsorbed hydrogen Adsorbed hydroxyl Passivation Pt electrode Reduction of UO22+ 



This work was supported by the Nuclear R&D Program of the Korean Ministry of Science and Technology (MOST). Incidentally, this work was partly supported by the Brain Korea 21 project. Furthermore, the authors are indebted to Mr. K.-N. Jung and Mr. K.-H. Na in CIERL at KAIST for their helpful comments.


  1. 1.
    Wood CJ (1995) PWR Primary Water Chemistry Guidelines: Revision 3, Report EPRI TR-105714. Electric Power Research Institute, Palo Alto, CA, USAGoogle Scholar
  2. 2.
    Ishigure K, Nukii T, Ono S (2006) J Nucl Mater 350:56CrossRefGoogle Scholar
  3. 3.
    Fearnehough GD, Cowan A (1967) J Nucl Mater 22:137CrossRefGoogle Scholar
  4. 4.
    Cowan A, Langford WJ (1969) J Nucl Mater 30:271CrossRefGoogle Scholar
  5. 5.
    Smith E (1995) J Mater Sci 30:5910CrossRefGoogle Scholar
  6. 6.
    Magnin T, Noël D, Rios R (1994) Mat Sci Eng A-Struct 177:L11CrossRefGoogle Scholar
  7. 7.
    Symons DM (1999) J Nucl Mater 265:225CrossRefGoogle Scholar
  8. 8.
    Burrill KA (1998) Some aspects of water chemistry in the CANDU primary coolant circuit, proceedings of JAIF Int. Conf. Water Chem. Nucl. Power Plants, Kashiwazaki, Japan, 13–16 October, p 426Google Scholar
  9. 9.
    Yeon J-W, Jung Y, Pyun S-I (2006) J Nucl Mater 354:163CrossRefGoogle Scholar
  10. 10.
    Keller C (1971) The Chemistry of the Transuranium Elements. Verlag Chemie GmbH, Weinheim/Bergstr., Germany, p 77Google Scholar
  11. 11.
    Aramata A, Terui S, Taguchi S, Kawaguchi T, Shimazu K (1996) Electrochim Acta 41:761CrossRefGoogle Scholar
  12. 12.
    Futamata M, Luo L, Nishihara C (2005) Surf Sci 590:196CrossRefGoogle Scholar
  13. 13.
    Nowicka AM, Zabost E, Donten M, Mazerska Z, Stojek Z (2006) Bioelectrochemistry 71:126Google Scholar
  14. 14.
    Herasymenko P (1928) Trans Faraday Soc 24:272CrossRefGoogle Scholar
  15. 15.
    Kolthoff IM, Harris WE (1946) J Am Chem Soc 68:1175CrossRefGoogle Scholar
  16. 16.
    Kern DMH, Orlemann EF (1949) J Am Chem Soc 71:2102CrossRefGoogle Scholar
  17. 17.
    Duke FR, Pinkerton RC (1951) J Am Chem Soc 73:2361CrossRefGoogle Scholar
  18. 18.
    Linzbach G, Kreysa G (1988) Electrochim Acta 33:1343CrossRefGoogle Scholar
  19. 19.
    Jung K-S, Sohn S, Ha Y, Eom T (1991) J Electroanal Chem 315:113CrossRefGoogle Scholar
  20. 20.
    Bockris JO’M, Reddy AK (1973) Modern Electrochemistry, Plenum/Resetta ed. Plenum Press, New York, p 1141Google Scholar
  21. 21.
    Gileadi E, Kirowa-Eisner E, Penciner J (1975) Interfacial Electrochemistry. Addison-Wesley Publishing Company, London, p 293Google Scholar
  22. 22.
    Conway BE, Bai L (1986) J Electroanal Chem 198:149CrossRefGoogle Scholar
  23. 23.
    Burk LD, O’Leary WA (1989) J Appl Electrochem 19:758CrossRefGoogle Scholar
  24. 24.
    Gabe DR (1997) J Appl Electrochem 27:908CrossRefGoogle Scholar
  25. 25.
    Marković NM, Grgur BN, Ross PN (1997) J Phys Chem B 101:5405CrossRefGoogle Scholar
  26. 26.
    Conway BE, Tilak BV (2002) Electrochim Acta 47:3571CrossRefGoogle Scholar
  27. 27.
    Varela H, Krischer K (2001) Catal Today 70:411CrossRefGoogle Scholar
  28. 28.
    Macdonald DD, Scott AC, Wentrcek P (1979) J Electrochem Soc 126:1618CrossRefGoogle Scholar
  29. 29.
    Horányi G, Visy Cs (1979) J Electroanal Chem 103:353CrossRefGoogle Scholar
  30. 30.
    Krischer K, Lübke M, Eiswirth M, Wolf W, Hudson JL, Ertl G (1993) Physica D 62:123CrossRefGoogle Scholar
  31. 31.
    Conway BE, Bockris JO’M (1957) J Chem Phys 26:532CrossRefGoogle Scholar
  32. 32.
    Dean JA (ed) (1973) Lange’s Handbook of Chemistry, 11th edn. McGraw-Hill, New York, p 6/17Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Nuclear Chemistry Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  2. 2.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations